Skip to main content
Log in

Pitfalls in the MDCT of pancreatic cancer: strategies for minimizing errors

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Multidetector computed tomography (MDCT) is a widely used cross-sectional imaging modality for initial evaluation of patients with suspected pancreatic ductal adenocarcinoma (PDAC). However, diagnosis of PDAC can be challenging due to numerous pitfalls associated with image acquisition and interpretation, including technical factors, imaging features, and cognitive errors. Accurate diagnosis requires familiarity with these pitfalls, as these can be minimized using systematic strategies. Suboptimal acquisition protocols and other technical errors such as motion artifacts and incomplete anatomical coverage increase the risk of misdiagnosis. Interpretation of images can be challenging due to intrinsic tumor features (including small and isoenhancing masses, exophytic masses, subtle pancreatic duct irregularities, and diffuse tumor infiltration), presence of coexisting pathology (including chronic pancreatitis and intraductal papillary mucinous neoplasm), mimickers of PDAC (including focal fatty infiltration and focal pancreatitis), distracting findings, and satisfaction of search. Awareness of pitfalls associated with the diagnosis of PDAC along with the strategies to avoid them will help radiologists to minimize technical and interpretation errors. Cognizance and mitigation of these errors can lead to earlier PDAC diagnosis and ultimately improve patient prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al (2006) Cancer statistics, 2006. CA Cancer J Clin. 56 (2):106-130.

    PubMed  Google Scholar 

  2. SEER Cancer Statistics Review, 1975–2014. National Cancer Institute, 2019. Available at: https://seer.cancer.gov/csr/1975_2014/). Accessed August 23, 2019.

  3. Fitzmaurice C, Dicker D, Pain A, et al (2015) The global burden of cancer 2013. JAMA Oncol. 1 (4):505-527.

    PubMed  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68 (6):394-424.

    Google Scholar 

  5. Gong J, Tuli R, Shinde A, Hendifar AE (2016) Meta-analyses of treatment standards for pancreatic cancer. Mol Clin Oncol. 4(3):315-325.

    PubMed  Google Scholar 

  6. Evans DB, Farnell MB, Lillemoe KD, et al (2009) Surgical treatment of resectable and borderline resectable pancreas cancer: expert consensus statement. Ann Surg Onco. 16(7):1736-1744.

    Google Scholar 

  7. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med. 371(11):1039-1049.

    CAS  PubMed  Google Scholar 

  8. Wray CJ, Ahmad SA, Matthews JB, Lowy AM (2005) Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology. 128 (6):1626-1641.

    PubMed  Google Scholar 

  9. Howlader N, Noone A, Krapcho M, et al (2017) SEER cancer statistics review, 1975–2014. Bethesda, MD: National Cancer Institute 2018.

    Google Scholar 

  10. Al-Hawary MM, Francis IR, Chari ST, et al (2014) Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology. 270 (1):248-260.

    PubMed  Google Scholar 

  11. National Comprehensive Cancer Network (2011) NCCN clinical practice guidelines in oncology (NCCN guidelines). Central Nervous System Cancers Version 2. 19-21.

    Google Scholar 

  12. Chu LC, Goggins MG, Fishman EK (2017) Diagnosis and detection of pancreatic cancer. Cancer J. 23 (6):333-342.

    PubMed  Google Scholar 

  13. Toft J, Hadden WJ, Laurence JM, et al (2017) Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy. Eur J Radiol. 92:17-23.

    PubMed  Google Scholar 

  14. Raman SP, Horton KM, Fishman EK (2012) Multimodality imaging of pancreatic cancer—computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J. 18 (6):511-522.

    PubMed  Google Scholar 

  15. Horton KM, Fishman EK (2002) Adenocarcinoma of the pancreas: CT imaging. Radiol Clin North Am. 40 (6):1263-1272.

    PubMed  Google Scholar 

  16. Pawlik TM, Laheru D, Hruban RH, et al (2008) Evaluating the impact of a single-day multidisciplinary clinic on the management of pancreatic cancer. Ann Surg Oncol. 15 (8):2081-2088.

    PubMed  PubMed Central  Google Scholar 

  17. Gonoi W, Hayashi TY, Okuma H, et al (2017) Development of pancreatic cancer is predictable well in advance using contrast-enhanced CT: a case–cohort study. Eur Radiol. 27 (12):4941-4950.

    PubMed  Google Scholar 

  18. CTisus (2019) Educational Tools. Available at: https://www.ctisus.com/responsive/protocols. Accessed August 23, 2019.

  19. Brennan DD, Zamboni GA, Raptopoulos VD, Kruskal JB (2007) Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics. 27 (6):1653-1666.

    PubMed  Google Scholar 

  20. Somers I, Bipat S (2017) Contrast-enhanced CT in determining resectability in patients with pancreatic carcinoma: a meta-analysis of the positive predictive values of CT. Eur Radio. 27 (8):3408-3435.

    Google Scholar 

  21. Megibow AJ, Zhou XH, Rotterdam H, et al (1995) Pancreatic adenocarcinoma: CT versus MR imaging in the evaluation of resectability–report of the Radiology Diagnostic Oncology Group. Radiology. 195 (2):327-332.

    CAS  PubMed  Google Scholar 

  22. Soriano A, Castells A, Ayuso C, et al (2004) Preoperative staging and tumor resectability assessment of pancreatic cancer: prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography. Am J Gastroenterol. 99 (3):492-501.

    PubMed  Google Scholar 

  23. Fishman EK, Ney DR, Heath DG, et al (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 26 (3):905-922.

    PubMed  Google Scholar 

  24. Nino-Murcia M, Jeffrey Jr RB, Beaulieu CF, Li KC, Rubin GD (2001) Multidetector CT of the pancreas and bile duct system: value of curved planar reformations. AJR Am J Roentgenol. 176 (3):689-693.

    CAS  PubMed  Google Scholar 

  25. Grieser C, Steffen IG, Grajewski L, et al (2010) Preoperative multidetector row computed tomography for evaluation and assessment of resection criteria in patients with pancreatic masses. Acta Radiol. 51 (10):1067-1077.

    PubMed  Google Scholar 

  26. Fang C-h, Zhu W, Wang H, et al (2012) A new approach for evaluating the resectability of pancreatic and periampullary neoplasms. Pancreatology. 12 (4):364-371.

    PubMed  Google Scholar 

  27. Catalano C, Laghi A, Fraioli F, et al (2003) Pancreatic carcinoma: the role of high-resolution multislice spiral CT in the diagnosis and assessment of resectability. Eur Radiol. 13 (1):149-156.

    PubMed  Google Scholar 

  28. Yang R, Lu M, Qian X, et al (2014) Diagnostic accuracy of EUS and CT of vascular invasion in pancreatic cancer: a systematic review. J Cancer Res Clin Oncol. 140 (12):2077-2086.

    CAS  PubMed  Google Scholar 

  29. Chu LC, Johnson PT, Fishman EK (2018) Cinematic rendering of pancreatic neoplasms: preliminary observations and opportunities. Abdom Radiol (NY). 43 (11):3009-3015.

    PubMed  Google Scholar 

  30. Johnson PT, Schneider R, Lugo-Fagundo C, Johnson MB, Fishman EK (2017) MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. AJR Am J Roentgenol. 209 (2):309-312.

    PubMed  Google Scholar 

  31. Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology. 278 (2):563-577.

    PubMed  PubMed Central  Google Scholar 

  32. Chu LC, Park S, Kawamoto S, et al (2019) Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR Am J Roentgenol. 213(2):349-357.

    PubMed  Google Scholar 

  33. Chen F-M, Ni J-M, Zhang Z-Y, et al (2016) Presurgical evaluation of pancreatic cancer: a comprehensive imaging comparison of CT versus MRI. AJR Am J Roentgenol. 206 (3):526-535.

    PubMed  Google Scholar 

  34. Sheridan M, Ward J, Guthrie J, et al (1999) Dynamic contrast-enhanced MR imaging and dual-phase helical CT in the preoperative assessment of suspected pancreatic cancer: a comparative study with receiver operating characteristic analysis. AJR Am J Roentgenol. 173 (3):583-590.

    CAS  PubMed  Google Scholar 

  35. Erturk SM, Ichikawa T, Sou H, et al (2006) Pancreatic adenocarcinoma: MDCT versus MRI in the detection and assessment of locoregional extension. J Comput Assist Tomogr. 30 (4):583-590.

    Google Scholar 

  36. Bipat S, Phoa SSS, van Delden OM, et al (2005) Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J Comput Assist Tomogr. 29 (4):438-445.

    PubMed  Google Scholar 

  37. Ito T, Sugiura T, Okamura Y, et al (2017) The diagnostic advantage of EOB-MR imaging over CT in the detection of liver metastasis in patients with potentially resectable pancreatic cancer. Pancreatology. 17 (3):451-456.

    PubMed  Google Scholar 

  38. Motosugi U, Ichikawa T, Morisaka H, et al (2011) Detection of pancreatic carcinoma and liver metastases with Gadoxetic acid–enhanced MR imaging: comparison with contrast-enhanced multi–detector row CT. Radiology. 260 (2):446-453.

    PubMed  Google Scholar 

  39. Lens E, Gurney-Champion OJ, Tekelenburg DR, et al (2016) Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared. Radiother Oncol. 121 (2):268-275.

    PubMed  Google Scholar 

  40. Schultz CL, Alfidi R, Nelson AD, Kopiwoda SY, Clampitt ME (1984) The effect of motion on two-dimensional Fourier transformation magnetic resonance images. Radiology. 152 (1):117-121.

    CAS  PubMed  Google Scholar 

  41. Wood ML, Henkelman RM (1985) MR image artifacts from periodic motion. Med Phys. 12 (2):143-151.

    CAS  PubMed  Google Scholar 

  42. Simeone J, Edelman R, Stark D, et al (1985) Surface coil MR imaging of abdominal viscera. Part III. The pancreas. Radiology. 157 (2):437-441.

    CAS  PubMed  Google Scholar 

  43. Yang RK, Roth CG, Ward RJ, deJesus JO, Mitchell DG (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics. 30 (1):185-199.

    PubMed  Google Scholar 

  44. Wood ML, Runge V, Henkelman RM (1988) Overcoming motion in abdominal MR imaging. AJR Am J Roentgenol. 150 (3):513-522.

    CAS  PubMed  Google Scholar 

  45. Patel BN (2018) Routine MR Imaging for Pancreas. Magn Reson Imaging Clin N Am. 26 (3):315-322.

    PubMed  Google Scholar 

  46. Canellas R, Rosenkrantz AB, Taouli B, et al (2019) Abbreviated MRI Protocols for the Abdomen. Radiographics. 39(3):744-758.

    PubMed  Google Scholar 

  47. Orlando L, Kulasingam S, Matchar DB (2004) Meta‐analysis: the detection of pancreatic malignancy with positron emission tomography. Aliment Pharmacol Ther. 20 (10):1063-1070.

    CAS  PubMed  Google Scholar 

  48. Rijkers A, Valkema R, Duivenvoorden H, Van Eijck CH (2014) Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: a meta-analysis. Eur J Surg Oncol. 40 (7):794-804.

    CAS  PubMed  Google Scholar 

  49. Yukutake M, Sasaki T, Serikawa M, et al (2014) The effect of respiratory-gated positron emission tomography/computed tomography in patients with pancreatic cancer. Hell J Nucl Med. 17 (1):31-36.

    PubMed  Google Scholar 

  50. Tsuchiya R, Noda T, Harada N, et al (1986) Collective review of small carcinomas of the pancreas. Ann Surg. 203 (1):77.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Egawa S, Takeda K, Fukuyama S, et al (2004) Clinicopathological aspects of small pancreatic cancer. Pancreas. 28 (3):235-240.

    PubMed  Google Scholar 

  52. Bronstein YL, Loyer EM, Kaur H, et al (2004) Detection of small pancreatic tumors with multiphasic helical CT. AJR Am J Roentgenol. 182 (3):619-623.

    PubMed  Google Scholar 

  53. Ichikawa T, Haradome H, Hachiya J, et al (1997) Pancreatic ductal adenocarcinoma: preoperative assessment with helical CT versus dynamic MR imaging. Radiology. 202 (3):655-662.

    CAS  PubMed  Google Scholar 

  54. Yoon SH, Lee JM, Cho JY, et al (2011) Small (≤ 20 mm) pancreatic adenocarcinomas: analysis of enhancement patterns and secondary signs with multiphasic multidetector CT. Radiology. 259 (2):442-452.

    PubMed  Google Scholar 

  55. Ahn SS, Kim M-J, Choi J-Y, et al (2009) Indicative findings of pancreatic cancer in prediagnostic CT. Eur Radiol. 19 (10):2448-2455.

    PubMed  Google Scholar 

  56. Tamada T, Ito K, Kanomata N, et al (2016) Pancreatic adenocarcinomas without secondary signs on multiphasic multidetector CT: association with clinical and histopathologic features. Eur Radiol. 26 (3):646-655.

    PubMed  Google Scholar 

  57. Yoshinobu T, Abe K, Sasaki Y, et al (2011) Data management solution for large-volume computed tomography in an existing picture archiving and communication system (PACS). J Digit Imaging. 24(1):107-113.

    PubMed  Google Scholar 

  58. Guchlerner L, Wichmann JL, Tischendorf P, et al (2018) Comparison of thick- and thin-slice images in thoracoabdominal trauma CT: a retrospective analysis. Eur J Trauma Emerg Surg. Sep 28.

  59. Woo HS, Kim KJ, Kim TJ, et al (2007) JPEG 2000 compression of abdominal CT: difference in tolerance between thin-and thick-section images. AJR Am J Roentgenol. 189(3):535-541.

    PubMed  Google Scholar 

  60. Ding Y, Zhou J, Sun H, et al (2013) Contrast-enhanced multiphasic CT and MRI findings of adenosquamous carcinoma of the pancreas. Clin Imaging. 37 (6):1054-1060.

    PubMed  Google Scholar 

  61. Tatli S, Mortele KJ, Levy AD, et al (2005) CT and MRI features of pure acinar cell carcinoma of the pancreas in adults. AJR Am J Roentgenol. 184 (2):511-519.

    PubMed  Google Scholar 

  62. Kim WH, Lee JY, Park HS, et al (2013) Lymphoepithelial cyst of the pancreas: comparison of CT findings with other pancreatic cystic lesions. Abdom Imaging. 38 (2):324-330.

    PubMed  Google Scholar 

  63. Kim JH, Park SH, Yu ES, et al (2010) Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 257 (1):87-96.

    PubMed  Google Scholar 

  64. Zhu L, Xue H-d, Sun H, et al (2016) Isoattenuating insulinomas at biphasic contrast-enhanced CT: frequency, clinicopathologic features and perfusion characteristics. Eur Radiol. 26 (10):3697-3705.

    PubMed  Google Scholar 

  65. Fletcher JG, Wiersema MJ, Farrell MA, et al (2003) Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi–detector row CT. Radiology. 229 (1):81-90.

    PubMed  Google Scholar 

  66. Prokesch RW, Chow LC, Beaulieu CF, Bammer R, Jeffrey Jr (2002) Isoattenuating pancreatic adenocarcinoma at multi–detector row CT: secondary signs. Radiology. 224 (3):764-768.

    PubMed  Google Scholar 

  67. Scialpi M, Pierotti L, Piscioli I, et al (2012) Detection of small (<= 20 mm) pancreatic adenocarcinoma: histologic grading and CT enhancement features. Radiology. 262 (3):1044-1045; author reply 1045.

    PubMed  Google Scholar 

  68. Ishigami K, Yoshimitsu K, Irie H, et al (2009) Diagnostic value of the delayed phase image for iso-attenuating pancreatic carcinomas in the pancreatic parenchymal phase on multidetector computed tomography. Eur J Radiol. 69 (1):139-146.

    PubMed  Google Scholar 

  69. Blouhos K, Boulas K, Tsalis K, Hatzigeorgiadis AJSo (2015) The isoattenuating pancreatic adenocarcinoma: review of the literature and critical analysis. Surg Oncol. 24 (4):322-328.

    CAS  PubMed  Google Scholar 

  70. Shanbhogue AKP, Tirumani SH, Prasad SR, Fasih N, McInnes M (2011) Benign biliary strictures: a current comprehensive clinical and imaging review. AJR Am J Roentgenol. 197 (2):295-306.

    Google Scholar 

  71. Fritz S, Bergmann F, Grenacher L, et al (2014) Diagnosis and treatment of autoimmune pancreatitis types 1 and 2. Br J Surg. 101 (10):1257-1265.

    CAS  PubMed  Google Scholar 

  72. Shi Z, Li X, You R, et al (2018) Homogenously isoattenuating insulinoma on biphasic contrast‑enhanced computed tomography: Little benefits of diffusion‑weighted imaging for lesion detection. Oncol Lett. 16 (3):3117-3125.

    PubMed  PubMed Central  Google Scholar 

  73. Ochi K, Hasuoka H, Mizushima T, Matsumura N, Harada H (1998) A case of small pancreatic cancer diagnosed by serial follow-up studies promptly by a positive K-ras point mutation in pure pancreatic juice. Am J Gastroenterol. 93 (8):1366.

    CAS  PubMed  Google Scholar 

  74. Fujisaki S, Takashina M, Tomita R, et al (2016) Two Cases Pancreatic Carcinoma Detected Incidentally during Treatment of Acute Abdomen from Other Causes. Gan To Kagaku Ryoho. 43 (12):1662-1664.

    PubMed  Google Scholar 

  75. Blouhos K, Boulas KA, Tselios DG, et al (2013) Surgically proved visually isoattenuating pancreatic adenocarcinoma undetected in both dynamic CT and MRI. Was blind pancreaticoduodenectomy justified? Int J Surg Case Rep. 4 (5):466-469.

    PubMed  PubMed Central  Google Scholar 

  76. Hanada K, Okazaki A, Hirano N, et al (2015) Effective screening for early diagnosis of pancreatic cancer. Best Pract Res Clin Gastroenterol. 29 (6):929-939.

    PubMed  Google Scholar 

  77. Low G, Panu A, Millo N, Leen E (2011) Multimodality imaging of neoplastic and nonneoplastic solid lesions of the pancreas. Radiographics. 31 (4):993-1015.

    PubMed  Google Scholar 

  78. Chang WI, Kim BJ, Lee JK, et al (2009) The clinical and radiological characteristics of focal mass-forming autoimmune pancreatitis: comparison with chronic pancreatitis and pancreatic cancer. Pancreas. 38 (4):401-408.

    PubMed  Google Scholar 

  79. Hafezi-Nejad N, Singh VK, Fung C, Takahashi N, Zaheer AJMRIC (2018) MR Imaging of Autoimmune Pancreatitis. Magn Reson Imaging Clin N Am. 26 (3):463-478.

    PubMed  Google Scholar 

  80. Irie H, Honda H, Baba S, et al (1998) Autoimmune pancreatitis: CT and MR characteristics. AJR Am J Roentgenol. 170 (5):1323-1327.

    CAS  PubMed  Google Scholar 

  81. Katabathina VS, Khalil S, Shin S, et al (2016) Immunoglobulin G4–Related Disease: Recent Advances in Pathogenesis and Imaging Findings. Radiol Clin North Am. 54 (3):535-551.

    PubMed  Google Scholar 

  82. Chari ST, Smyrk TC, Levy MJ, et al (2006) Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol. 4 (8):1010-1016.

    PubMed  Google Scholar 

  83. Church NI, Pereira SP, Deheragoda MG, et al (2007) Autoimmune pancreatitis: clinical and radiological features and objective response to steroid therapy in a UK series. Am J Gastroenterol. 102 (11):2417.

    CAS  PubMed  Google Scholar 

  84. Merkle EM, Bender GN, Brambs HJ (2000) Imaging findings in pancreatic lymphoma: differential aspects. AJR Am J Roentgenol. 174 (3):671-675.

    CAS  PubMed  Google Scholar 

  85. Ishigami K, Tajima T, Nishie A, et al (2010) MRI findings of pancreatic lymphoma and autoimmune pancreatitis: a comparative study. Eur J Radiol. 74 (3):22-28.

    Google Scholar 

  86. Tuchek J, De SJ, Pickleman J (1993) Diagnosis, surgical intervention, and prognosis of primary pancreatic lymphoma. Am Surg. 59 (8):513-518.

    CAS  PubMed  Google Scholar 

  87. Tsitouridis I, Diamantopoulou A, Michaelides M, et al (2010) Pancreatic metastases: CT and MRI findings. Diagn Interv Radiol. 16 (1):45.

    PubMed  Google Scholar 

  88. Kelekis NL, Semelka RC, Siegelman ES (1996) MRI of pancreatic metastases from renal cancer. J Comput Assist Tomogr. 20 (2):249-253.

    CAS  PubMed  Google Scholar 

  89. Klein KA, Stephens DH, Welch TJ (1998) CT characteristics of metastatic disease of the pancreas. Radiographics. 18 (2):369-378.

    CAS  PubMed  Google Scholar 

  90. Narkhede RA, Desai GS, Prasad PP, Wagle PK (2019) Diagnosis and Management of Pancreatic Adenocarcinoma in the Background of Chronic Pancreatitis: Core Issues. Dig Dis. 37(4):315-324.

    PubMed  Google Scholar 

  91. Kirkegård J, Mortensen FV, Cronin-Fenton D (2017) Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol. 112 (9):1366.

    PubMed  Google Scholar 

  92. Karasawa E, Goldberg HI, Moss AA, Federle M, London SS (1983) CT pancreatogram in carcinoma of the pancreas and chronic pancreatitis. Radiology. 148 (2):489-493.

    CAS  PubMed  Google Scholar 

  93. Yin Q, Zou X, Zai X, et al (2015) Pancreatic ductal adenocarcinoma and chronic mass-forming pancreatitis: Differentiation with dual-energy MDCT in spectral imaging mode. Eur J Radiol. 84 (12):2470-2476.

    PubMed  Google Scholar 

  94. Prokesch RW, Schima W, Chow LC, Jeffrey RB (2003) Multidetector CT of pancreatic adenocarcinoma: diagnostic advances and therapeutic relevance. Eur Radiol. 13 (9):2147-2154.

    PubMed  Google Scholar 

  95. Yadav AK, Sharma R, Kandasamy D, et al (2016) Perfusion CT - Can it resolve the pancreatic carcinoma versus mass forming chronic pancreatitis conundrum? Pancreatology. 16(6):979-987.

    PubMed  Google Scholar 

  96. Aslan S, Nural MS, Camlidag I, et al (2019) Efficacy of perfusion CT in differentiating of pancreatic ductal adenocarcinoma from mass-forming chronic pancreatitis and characterization of isoattenuating pancreatic lesions. Abdom Radiol (NY). 44(2):593-603.

    PubMed  Google Scholar 

  97. Fritscher-Ravens A, Brand L, Knöfel WT, et al (2002) Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis. Am J Gastroenterol. 97 (11):2768.

    PubMed  Google Scholar 

  98. Varadarajulu S, Tamhane A, Eloubeidi MA (2005) Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointest Endosc. 62 (5):728-736.

    PubMed  Google Scholar 

  99. Bang JY, Varadarajulu S (2014) Neoplasia in chronic pancreatitis: how to maximize the yield of endoscopic ultrasound-guided fine needle aspiration. Clin Endosc. 47 (5):420.

    PubMed  PubMed Central  Google Scholar 

  100. Hewitt MJ, McPhail MJ, Possamai L, et al (2012) EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc. 75 (2):319-331.

    PubMed  Google Scholar 

  101. LeBlanc JK, Ciaccia D, Al-Assi MT, et al (2004) Optimal number of EUS-guided fine needle passes needed to obtain a correct diagnosis. Gastrointest Endosc. 59 (4):475-481.

    PubMed  Google Scholar 

  102. De Robertis R, Martini PT, Demozzi E, et al (2015) Diffusion-weighted imaging of pancreatic cancer. World J Radiol. 7 (10):319.

    PubMed  PubMed Central  Google Scholar 

  103. Niu X, Das SK, Bhetuwal A, et al (2014) Value of diffusion-weighted imaging in distinguishing pancreatic carcinoma from mass-forming chronic pancreatitis: a meta-analysis. Chin Med J (Engl). 127(19):3477-82.

    PubMed  Google Scholar 

  104. Siddiqui N, Vendrami CL, Chatterjee A, Miller FH (2018) Advanced MR Imaging Techniques for Pancreas Imaging. Magn Reson Imaging Clin N Am. 26 (3):323-344.

    PubMed  Google Scholar 

  105. Hsu W-L, Chang S-M, Wu P-Y, Chang CC (2018) Localized autoimmune pancreatitis mimicking pancreatic cancer: Case report and literature review. J Int Med Res. 46 (4):1657-1665.

    PubMed  PubMed Central  Google Scholar 

  106. Cao Z, Tian R, Zhang T, Zhao Y (2015) Localized autoimmune pancreatitis: report of a case clinically mimicking pancreatic cancer and a literature review. Medicine (Baltimore). 94(42):1656.

    Google Scholar 

  107. Díte P, Uvírová M, Bojková M, et al (2014) Differentiating autoimmune pancreatitis from pancreatic cancer. Minerva Gastroenterol Dietol. 60 (4):247-253.

    PubMed  Google Scholar 

  108. Adsay NV (2008) Cystic neoplasia of the pancreas: pathology and biology. J Gastrointest Surg. 12 (3):401-404.

    PubMed  Google Scholar 

  109. Procacci C, Megibow AJ, Carbognin G, et al (1999) Intraductal papillary mucinous tumor of the pancreas: a pictorial essay. Radiographics. 19 (6):1447-1463.

    CAS  PubMed  Google Scholar 

  110. Machado NO, Al Qadhi H, Al Wahibi K (2015) Intraductal papillary mucinous neoplasm of pancreas. N Am J Med Sci. 7 (5):160.

    PubMed  PubMed Central  Google Scholar 

  111. Stark A, Donahue TR, Reber HA, Hines OJ (2016) Pancreatic cyst disease: a review. JAMA. 315 (17):1882-1893.

    CAS  PubMed  Google Scholar 

  112. Megibow AJ, Baker ME, Morgan DE, et al (2017) Management of incidental pancreatic cysts: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol. 14 (7):911-923.

    PubMed  Google Scholar 

  113. Kim KW, Park SH, Pyo J, et al (2014) Imaging features to distinguish malignant and benign branch-duct type intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis. Ann Surg. 259 (1):72-81.

    PubMed  Google Scholar 

  114. Tanaka M, Chari S, Adsay V, et al (2006) International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 6 (1-2):17-32.

    PubMed  Google Scholar 

  115. Kucera JN, Kucera S, Perrin SD, et al (2012) Cystic lesions of the pancreas: radiologic-endosonographic correlation. Radiographics. 32 (7):283-301.

    Google Scholar 

  116. Tanaka M, Fernandez-Del Castillo C, Kamisawa T, et al (2017) Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 17(5):738-753.

    PubMed  Google Scholar 

  117. Kawamoto S, Horton KM, Lawler LP, Hruban RH, Fishman EK (2005) Intraductal papillary mucinous neoplasm of the pancreas: can benign lesions be differentiated from malignant lesions with multidetector CT? Radiographics. 25 (6):1451-1468.

    PubMed  Google Scholar 

  118. Castelli F, Bosetti D, Negrelli R, et al (2013) Multifocal branch-duct intraductal papillary mucinous neoplasms (IPMNs) of the pancreas: magnetic resonance (MR) imaging pattern and evolution over time. Radiol Med. 118 (6):917-929.

    PubMed  Google Scholar 

  119. Kang KM, Lee JM, Shin CI, et al (2013) Added value of diffusion‐weighted imaging to MR cholangiopancreatography with unenhanced MR imaging for predicting malignancy or invasiveness of intraductal papillary mucinous neoplasm of the pancreas. J Magn Reson Imaging. 38 (3):555-563.

    PubMed  Google Scholar 

  120. Gourgiotis S, Ridolfini M, Germanos S (2007) Intraductal papillary mucinous neoplasms of the pancreas. Eur J Surg Oncol. 33 (6):678-684.

    CAS  PubMed  Google Scholar 

  121. Palmucci S, Trombatore C, Foti PV, et al (2014) The utilization of imaging features in the management of intraductal papillary mucinous neoplasms. Gastroenterol Res Pract. 2014:765451.

    PubMed  PubMed Central  Google Scholar 

  122. Hruban RH, Takaori K, Klimstra DS, et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 28 (8):977-987.

    PubMed  Google Scholar 

  123. Lee KH, Lee S-J, Lee JK, et al (2014) Prediction of Malignancy With Endoscopic Ultrasonography in Patients With Branch Duct–Type Intraductal Papillary Mucinous Neoplasm. Pancreas. 43 (8):1306-1311.

    PubMed  Google Scholar 

  124. Takanami K, Hiraide T, Tsuda M, et al (2011) Additional value of FDG PET/CT to contrast-enhanced CT in the differentiation between benign and malignant intraductal papillary mucinous neoplasms of the pancreas with mural nodules. Ann Nucl Med. 25 (7):501-510.

    PubMed  Google Scholar 

  125. Bruno MA, Walker EA, Abujudeh HH (2015) Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics. 35 (6):1668-1676.

    PubMed  Google Scholar 

  126. Berbaum KS (2012) Satisfaction of search experiments in advanced imaging. In: Human Vision and Electronic Imaging XVII. International Society for Optics and Photonics. 82910.

  127. Kumar B, Kanna B, Kumar S (2011) The pitfalls of premature closure: clinical decision-making in a case of aortic dissection. BMJ Case Rep. 0820114594.

  128. Biggs AT (2017) Getting satisfied with “satisfaction of search”: how to measure errors during multiple-target visual search. Atten Percept Psychophys. 79 (5):1352-1365.

    PubMed  Google Scholar 

  129. Winter JM, Cameron JL, Lillemoe KD, et al (2006) Periampullary and pancreatic incidentaloma: a single institution’s experience with an increasingly common diagnosis. Ann Surg. 243 (5):673.

    PubMed  PubMed Central  Google Scholar 

  130. Bruzoni M, Johnston E, Sasson AR (2008) Pancreatic incidentalomas: clinical and pathologic spectrum. Am J Surg. 195 (3):329-332.

    PubMed  Google Scholar 

  131. Laffan TA, Horton KM, Klein AP, et al (2008) Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol. 191 (3):802-807.

    PubMed  PubMed Central  Google Scholar 

  132. de Jong K, Nio CY, Hermans JJ, et al (2010) High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin Gastroenterol Hepatol. 8 (9):806-811.

    PubMed  Google Scholar 

  133. Cloyd JM, Poultsides GA (2015) Non-functional neuroendocrine tumors of the pancreas: Advances in diagnosis and management. World J Gastroenterol. 21 (32):9512.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gorelik M, Ahmad M, Grossman D, Grossman M, Cooperman AM (2018) Nonfunctioning Incidental Pancreatic Neuroendocrine Tumors: Who, When, and How to Treat? Surg Clin North Am. 98 (1):157-167.

    PubMed  Google Scholar 

  135. Kawamoto S, Siegelman SS, Bluemke DA, Hruban RH, Fishman EK (2009) Focal fatty infiltration in the head of the pancreas: evaluation with multidetector computed tomography with multiplanar reformation imaging. J Comput Assist Tomogr. 33 (1):90-95.

    PubMed  Google Scholar 

  136. Hague J, Amin Z (2006) Focal pancreatic lesion: can a neoplasm be confidently excluded? Br J Radiol. 79 (943):627-629.

    CAS  PubMed  Google Scholar 

  137. Kim HJ, Byun JH, Park SH, et al (2007) Focal fatty replacement of the pancreas: usefulness of chemical shift MRI. AJR Am J Roentgenol. 188 (2):429-432.

    PubMed  Google Scholar 

  138. Isserow JA, Siegelman ES, Mammone J (1999) Focal fatty infiltration of the pancreas: MR characterization with chemical shift imaging. AJR Am J Roentgenol. 173 (5):1263-1265.

    CAS  PubMed  Google Scholar 

  139. Movitz D (1967) Accessory spleens and experimental splenosis. Principles of growth. Chic Med Sch Q. 26 (4):183-187.

  140. Halpert B, Györkey F (1959) Lesions observed in accessory spleens of 311 patients. Am J Clin Pathol. 32 (2):165-168.

    CAS  PubMed  Google Scholar 

  141. Mortelé KJ, Mortele B, Silverman SG (2004) CT features of the accessory spleen. AJR Am J Roentgenol. 183 (6):1653-1657.

    PubMed  Google Scholar 

  142. Coquia SF, Kawamoto S, Zaheer A, et al (2014) Intrapancreatic accessory spleen: possibilities of computed tomography in differentiation from nonfunctioning pancreatic neuroendocrine tumor. J Comput Assist Tomogr. 38 (6):874.

    PubMed  PubMed Central  Google Scholar 

  143. Kim SH, Lee JM, Han JK, et al (2008) Intrapancreatic accessory spleen: findings on MR Imaging, CT, US and scintigraphy, and the pathologic analysis. Korean J Radiol. 9 (2):162-174.

    PubMed  PubMed Central  Google Scholar 

  144. Kim SH, Lee JM, Han JK, et al (2006) MDCT and superparamagnetic iron oxide (SPIO)-enhanced MR findings of intrapancreatic accessory spleen in seven patients. Eur Radiol. 16 (9):1887.

    PubMed  Google Scholar 

  145. Herédia V, Altun E, Bilaj F, et al (2008) Gadolinium-and superparamagnetic-iron-oxide-enhanced MR findings of intrapancreatic accessory spleen in five patients. Magn Reson Imaging. 26 (9):1273-1278.

    PubMed  Google Scholar 

  146. Ota T, Tei M, Yoshioka A, et al (1997) Intrapancreatic accessory spleen diagnosed by technetium-99m heat-damaged red blood cell SPECT. J Nucl Med. 38 (3):494-495.

    CAS  PubMed  Google Scholar 

  147. Rijkers AP, Bakker OJ, Ali UA, et al (2017) Risk of pancreatic cancer after a primary episode of acute pancreatitis. Pancreas. 46 (8):1018-1022.

    PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haj-Mirzaian, A., Kawamoto, S., Zaheer, A. et al. Pitfalls in the MDCT of pancreatic cancer: strategies for minimizing errors. Abdom Radiol 45, 457–478 (2020). https://doi.org/10.1007/s00261-019-02390-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02390-9

Keywords

Navigation