Skip to main content

Advertisement

Log in

Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer

  • Pelvis
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI.

Materials and methods

We retrospectively assessed the primary staging MRIs [prior to chemoradiotherapy (CRT)] of 133 rectal cancer patients from 2 centers. First, two expert radiologists subjectively estimated the likelihood of achieving a “complete response” (ypT0) and “good response” (TRG 1–2), using a 5-point score (based on TN-stage, MRF/EMVI-status, size/signal/shape). Next, tumor volumes were segmented on high b value DWI (semi-automated, corrected by 2 non-expert and 2-expert readers, resulting in 5 segmentations), copied to the remaining sequences after which a total of 2505 radiomic features were extracted from T2W, low and high b value DWI and ADC. Stability of features for noise due to inter-reader and inter-scanner and protocol variations was assessed using intraclass correlation (ICC) and the Kruskal–Wallis test. Using data from center 1 (n = 86; training set), top 9 features were selected using minimum Redundancy Maximum Relevance and combined in a logistic regression model. Finally, diagnostic performance of the fitted models was assessed on data from center 2 (n = 47; validation set) and compared to the performance of the radiologists.

Results

The Radiomic models resulted in AUCs of 0.69–0.79 (with similar results for the segmentations performed by expert/non-expert readers) to predict response, results similar to the morphologic prediction by the expert radiologists (AUC 0.67–0.83). Radiomics using semi-automatically generated segmentations (without manual input) did not result in significant predictive performance.

Conclusions

Radiomics could predict response to therapy with comparable diagnostic performance as expert radiologists, regardless of whether image segmentation was performed by non-expert or expert readers, indicating that expert input is not required in order for the radiomics workflow to produce significant predictive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maas M, Beets-Tan RG, Lambregts DM, Lammering G, Nelemans PJ, Engelen SM, et al. (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–40. https://doi.org/10.1200/jco.2011.37.7176.

    Article  Google Scholar 

  2. Martens MH, Maas M, Heijnen LA, Lambregts DMJ, Leijtens JWA, Stassen LPS, et al. (2016) Long-term Outcome of an Organ Preservation Program After Neoadjuvant Treatment for Rectal Cancer. J Natl Cancer Inst 108:djw171. https://doi.org/10.1093/jnci/djw171.

    Article  Google Scholar 

  3. van der Valk MJM, Hilling DE, Bastiaannet E, Meershoek-Klein Kranenbarg E, Beets GL, Figueiredo NL, et al. (2018) Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet 391:2537–45. https://doi.org/10.1016/s0140-6736(18)31078-x.

    Article  Google Scholar 

  4. Verseveld M, De Graaf EJR, Verhoef C, van Meerten E, Punt CJA, de Hingh IHJT, et al. (2015) Chemoradiation therapy for rectal cancer in the distal rectum followed by organ-sparing transanal endoscopic microsurgery (CARTS study). Br J Surg 102:853–60. https://doi.org/10.1002/bjs.9809.

    Article  CAS  Google Scholar 

  5. Bujko K, Richter P, Smith FM, Polkowski W, Szczepkowski M, Rutkowski A, et al. (2013) Preoperative radiotherapy and local excision of rectal cancer with immediate radical re-operation for poor responders: a prospective multicentre study. Radiother Oncol 106:198–205. https://doi.org/10.1016/j.radonc.2012.12.005.

    Article  Google Scholar 

  6. Rombouts AJM, Al-Najami I, Abbott NL, Appelt A, Baatrup G, Bach S, et al. (2017) Can we Save the rectum by watchful waiting or T rans A nal microsurgery following (chemo) R adiotherapy versus T otal mesorectal excision for early RE ctal C ancer (STAR-TREC study)?: protocol for a multicentre, randomised feasibility study. BMJ Open 7:e019474. https://doi.org/10.1136/bmjopen-2017-019474.

    Article  Google Scholar 

  7. Maas M, Nelemans PJ, Valentini V, Das P, Rodel C, Kuo LJ, et al. (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11:835–44.

    Article  Google Scholar 

  8. Curvo-Semedo L, Lambregts DMJ, Maas M, Thywissen T, Mehsen RT, Lammering G, et al. (2011) Rectal Cancer: Assessment of Complete Response to Preoperative Combined Radiation Therapy with Chemotherapy—Conventional MR Volumetry versus Diffusion-weighted MR Imaging. Radiology 260:734–43. https://doi.org/10.1148/radiol.11102467.

    Article  Google Scholar 

  9. Lambregts DM, Rao SX, Sassen S, Martens MH, Heijnen LA, Buijsen J, et al. (2015) MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study. Ann Surg 262:1034–9. https://doi.org/10.1097/sla.0000000000000909.

    Article  Google Scholar 

  10. Mahadevan LS, Zhong J, Venkatesulu B, Kaur H, Bhide S, Minsky B, et al. (2018) Imaging predictors of treatment outcomes in rectal cancer: An overview. Crit Rev Oncol Hematol 129:153–62. https://doi.org/10.1016/j.critrevonc.2018.06.009.

    Article  Google Scholar 

  11. Hötker AM, Tarlinton L, Mazaheri Y, Woo KM, Gönen M, Saltz LB, et al. (2016) Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters. Eur Radiol:1–10. https://doi.org/10.1007/s00330-016-4283-9.

    Article  Google Scholar 

  12. Martens MH, Subhani S, Heijnen LA, Lambregts DM, Buijsen J, Maas M, et al. (2015) Can perfusion MRI predict response to preoperative treatment in rectal cancer? Radiother Oncol 114:218–23. https://doi.org/10.1016/j.radonc.2014.11.044.

    Article  Google Scholar 

  13. Chen Y-G, Chen M-Q, Guo Y-Y, Li S-C, Wu J-X, Xu B-H. (2016) Apparent Diffusion Coefficient Predicts Pathology Complete Response of Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. PLoS One 11:e0153944. https://doi.org/10.1371/journal.pone.0153944.

    Article  Google Scholar 

  14. Hosny A, Parmar C, Quackenbush J, Schwartz LH, W L Aerts HJ. (2018). Artificial intelligence in radiology. https://doi.org/10.1038/s41568-018-0016-5.

    Article  CAS  Google Scholar 

  15. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–48. https://doi.org/10.1016/j.mri.2012.06.010.

    Article  Google Scholar 

  16. Gillies RJ, Kinahan PE, Hricak H. (2015) Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:151169. https://doi.org/10.1148/radiol.2015151169.

    Article  Google Scholar 

  17. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006.

  18. Liu Z, Zhang X-Y, Shi Y-J, Wang L, Zhu H-T, Tang Z-C, et al. (2017) Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clin Cancer Res:clincanres.1038.2017. https://doi.org/10.1158/1078-0432.ccr-17-1038.

    Article  CAS  Google Scholar 

  19. Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z, et al. (2019) Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 29:1211–20. https://doi.org/10.1007/s00330-018-5683-9.

    Article  Google Scholar 

  20. Cusumano D, Dinapoli N, Luca Boldrini ·, Chiloiro G, Gatta · Roberto, Masciocchi C, et al. (2018) Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med 123:286–95. https://doi.org/10.1007/s11547-017-0838-3.

    Article  Google Scholar 

  21. Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, et al. (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–6.

    Article  CAS  Google Scholar 

  22. van Heeswijk MM, Lambregts DMJ, van Griethuysen JJM, Oei S, Rao S-X, de Graaff CAM, et al. (2016) Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry? Int J Radiat Oncol 94:824–31. https://doi.org/10.1016/j.ijrobp.2015.12.017.

    Article  Google Scholar 

  23. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. (2010) Elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205. https://doi.org/10.1109/tmi.2009.2035616.

    Article  Google Scholar 

  24. Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M, et al. (2014) Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease for the Alzheimer’s Disease Neuroimaging Initiative. https://doi.org/10.3389/fninf.2013.00050.

  25. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–7. https://doi.org/10.1158/0008-5472.can-17-0339.

    Article  CAS  Google Scholar 

  26. Collewet G, Strzelecki M, Mariette F. (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91. https://doi.org/10.1016/j.mri.2003.09.001.

    Article  CAS  Google Scholar 

  27. Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, et al. (2011). Scikit-learn: Machine Learning in Python. vol. 12.

  28. Hanchuan Peng, Fuhui Long, Ding C. (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–38. https://doi.org/10.1109/tpami.2005.159.

    Article  Google Scholar 

  29. Ross BC. (2014) Mutual Information between Discrete and Continuous Data Sets. PLoS One 9:e87357. https://doi.org/10.1371/journal.pone.0087357.

    Article  Google Scholar 

  30. DeLong ER, DeLong DM, Clarke-Pearson DL. (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–45.

    Article  CAS  Google Scholar 

  31. Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, et al. (2018) MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology 287:172300. https://doi.org/10.1148/radiol.2018172300.

    Article  Google Scholar 

  32. Nie K, Shi L, Chen Q, Hu X, Jabbour S, Yue N, et al. (2016) Rectal Cancer: Assessment of Neoadjuvant Chemo-Radiation Outcome Based on Radiomics of Multi-Parametric MRI. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-15-2997.

    Article  Google Scholar 

  33. Huang Y -q., Liang C -s. C -h., He L, Tian J, Liang C -s. C -h., Chen X, et al. (2016) Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer SUPPLEMENT. J Clin Oncol:JCO659128. https://doi.org/10.1200/jco.2015.65.9128.

    Article  Google Scholar 

  34. Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G, et al. (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–50. https://doi.org/10.1016/j.radonc.2015.02.015.

    Article  Google Scholar 

  35. Maas M, Lambregts DM, Nelemans PJ, Heijnen LA, Martens MH, Leijtens JW, et al. (2015) Assessment of Clinical Complete Response After Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving Treatment. Ann Surg Oncol 22:3873–80. https://doi.org/10.1245/s10434-015-4687-9.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Dutch Cancer Society (KWF) (Grant No. 2016-2/10611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doenja M. J. Lambregts.

Ethics declarations

Conflict of interest

Dr. Aerts declares stock options in Sphera and Genospace, all other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Griethuysen, J.J.M., Lambregts, D.M.J., Trebeschi, S. et al. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. Abdom Radiol 45, 632–643 (2020). https://doi.org/10.1007/s00261-019-02321-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02321-8

Keywords

Navigation