Skip to main content
Log in

R2 relaxometry based MR imaging for estimation of liver iron content: A comparison between two methods

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the reproducibility and accuracy of R2-relaxometry MRI for estimation of liver iron concentration (LIC) between in-house analysis and FDA-approved commercially available third party results.

Methods

All MR studies were performed on a 1.5T scanner. Multi-echo spin-echo scans with a fixed TR and increasing TE values of 6 ms, 9 ms, 12 ms, 15 ms, and 18 ms (spaced at 3 ms intervals) were used. Post-processing of the images to calculate mean relaxivity, R2, included drawing of regions of interest to include the whole liver on mid-slice. The relationship between liver R2 values and estimated LIC calculated with in-house analysis and values reported by an external company (FerriScan®, Resonance Health, Australia) were assessed with correlation coefficients and Bland–Altman difference plots. Continuous variables are presented as mean ± standard deviation. Significance was set at p value < 0.05.

Results

474 studies from 175 patients were included in the study (mean age 10.4 ± 4.2 years (range 1–18 years); 254 studies from girls, 220 studies from boys). LIC ranged from 0.6 to 43 mg/g dry tissue, covering a broad range from normal levels to extremely high iron levels. Linearity between proprietary and in-house methods was excellent across the observed range for R2 (31.5 to 334.8 s−1); showing a correlation coefficient of r = 0.87, p < 0.001. Bland–Altman R2 difference plot between the two methods shows a mean bias of + 21.5 s−1 (range − 47.0 to + 90.0 s−1 between two standard deviations). LIC reported by FerriScan® compared with LIC estimated in-house with R2 as reported by FerriScan® agreed strongly, (r = 1.0, p < 0.001).

Conclusion

R2 relaxometry MR imaging for liver iron concentration estimation is reproducible between proprietary FDA-approved commercial software and in-house analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lieu PT, Heiskala M Fau - Peterson PA, Peterson Pa Fau - Yang Y, Yang Y. The roles of iron in health and disease. (0098-2997 (Print)).

  2. Ware HM, Kwiatkowski JL. Evaluation and treatment of transfusional iron overload in children. Pediatric clinics of North America. 2013;60(6):1393-406.

    Article  PubMed  Google Scholar 

  3. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. The American journal of gastroenterology. 2002;97(10):2614-8.

    Article  PubMed  Google Scholar 

  4. Beilby JP, Prins AW, Swanson NR. Determination of hepatic iron concentration in fresh and paraffin-embedded tissue. Clin Chem. 1999;45(4):573-4.

    CAS  PubMed  Google Scholar 

  5. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. Liver biopsy. Hepatology (Baltimore, Md). 2009;49(3):1017-44.

    Article  Google Scholar 

  6. Cunha GM, Glaser KJ, Bergman A, Luz RP, de Figueiredo EH, Lobo Lopes FPP. Feasibility and agreement of stiffness measurements using gradient-echo and spin-echo MR elastography sequences in unselected patients undergoing liver MRI. The British journal of radiology. 2018;91(1087):20180126.

    Article  PubMed  PubMed Central  Google Scholar 

  7. German AL, Fleming K, Kaye P, Davies S, Goldin R, Hubscher SG, et al. Can reference images improve interobserver agreement in reporting liver fibrosis? Journal of clinical pathology. 2018;71(4):368-71.

    Article  PubMed  Google Scholar 

  8. Jung ES, Lee K, Yu E, Kang YK, Cho MY, Kim JM, et al. Interobserver Agreement on Pathologic Features of Liver Biopsy Tissue in Patients with Nonalcoholic Fatty Liver Disease. Journal of pathology and translational medicine. 2016;50(3):190-6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pournik O, Alavian SM, Ghalichi L, Seifizarei B, Mehrnoush L, Aslani A, et al. Inter-observer and Intra-observer Agreement in Pathological Evaluation of Non-alcoholic Fatty Liver Disease Suspected Liver Biopsies. Hepatitis monthly. 2014;14(1):e15167.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ratziu V, Bonyhay L, Di Martino V, Charlotte F, Cavallaro L, Sayegh-Tainturier MH, et al. Survival, liver failure, and hepatocellular carcinoma in obesity-related cryptogenic cirrhosis. Hepatology (Baltimore, Md). 2002;35(6):1485-93.

    Article  Google Scholar 

  11. Bedossa P, Dargere D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology (Baltimore, Md). 2003;38(6):1449-57.

    Article  Google Scholar 

  12. Cadranel JF, Rufat P, Degos F. Practices of liver biopsy in France: results of a prospective nationwide survey. For the Group of Epidemiology of the French Association for the Study of the Liver (AFEF). Hepatology (Baltimore, Md). 2000;32(3):477-81.

  13. Froehlich F, Lamy O, Fried M, Gonvers JJ. Practice and complications of liver biopsy. Results of a nationwide survey in Switzerland. Dig Dis Sci. 1993;38(8):1480-4.

  14. Perrault J, McGill DB, Ott BJ, Taylor WF. Liver biopsy: complications in 1000 inpatients and outpatients. Gastroenterology. 1978;74(1):103-6.

    Article  CAS  PubMed  Google Scholar 

  15. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344(7):495-500.

    Article  CAS  PubMed  Google Scholar 

  16. Verlhac S, Morel M, Bernaudin F, Bechet S, Jung C, Vasile M. Liver iron overload assessment by MRI R2* relaxometry in highly transfused pediatric patients: an agreement and reproducibility study. Diagnostic and interventional imaging. 2015;96(3):259-64.

    Article  CAS  PubMed  Google Scholar 

  17. St Pierre TG, Clark PR, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Annals of the New York Academy of Sciences. 2005;1054:379-85.

    Article  PubMed  Google Scholar 

  18. Angelucci E, Giovagnoni A, Valeri G, Paci E, Ripalti M, Muretto P, et al. Limitations of magnetic resonance imaging in measurement of hepatic iron. Blood. 1997;90(12):4736-42.

    CAS  PubMed  Google Scholar 

  19. Brittenham GM, Badman DG. Noninvasive measurement of iron: report of an NIDDK workshop. Blood. 2003;101(1):15-9.

    Article  CAS  PubMed  Google Scholar 

  20. Dixon RM, Styles P, al-Refaie FN, Kemp GJ, Donohue SM, Wonke B, et al. Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy. Hepatology (Baltimore, Md). 1994;19(4):904-10.

  21. Engelhardt R, Langkowski JH, Fischer R, Nielsen P, Kooijman H, Heinrich HC, et al. Liver iron quantification: studies in aqueous iron solutions, iron overloaded rats, and patients with hereditary hemochromatosis. Magn Reson Imaging. 1994;12(7):999-1007.

    Article  CAS  PubMed  Google Scholar 

  22. Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol. 1990;74(3):360-3.

    Article  CAS  PubMed  Google Scholar 

  23. Mavrogeni SI, Gotsis ED, Markussis V, Tsekos N, Politis C, Vretou E, et al. T2 relaxation time study of iron overload in b-thalassemia. Magma (New York, NY). 1998;6(1):7-12.

    CAS  Google Scholar 

  24. Papakonstantinou O, Kostaridou S, Maris T, Gouliamos A, Premetis E, Kouloulias V, et al. Quantification of liver iron overload by T2 quantitative magnetic resonance imaging in thalassemia: impact of chronic hepatitis C on measurements. Journal of pediatric hematology/oncology. 1999;21(2):142-8.

    Article  CAS  PubMed  Google Scholar 

  25. St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 2005;105(2):855-61.

    Article  CAS  PubMed  Google Scholar 

  26. Stark DD, Bass NM, Moss AA, Bacon BR, McKerrow JH, Cann CE, et al. Nuclear magnetic resonance imaging of experimentally induced liver disease. Radiology. 1983;148(3):743-51.

    Article  CAS  PubMed  Google Scholar 

  27. Voskaridou E, Douskou M, Terpos E, Papassotiriou I, Stamoulakatou A, Ourailidis A, et al. Magnetic resonance imaging in the evaluation of iron overload in patients with beta thalassaemia and sickle cell disease. Br J Haematol. 2004;126(5):736-42.

    Article  CAS  PubMed  Google Scholar 

  28. Wang ZJ, Haselgrove JC, Martin MB, Hubbard AM, Li S, Loomes K, et al. Evaluation of iron overload by single voxel MRS measurement of liver T2. J Magn Reson Imaging. 2002;15(4):395-400.

    Article  PubMed  Google Scholar 

  29. Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magnetic resonance imaging clinics of North America. 2010;18(3):359-81, ix.

  30. Serai SD, Fleck RJ, Quinn CT, Zhang B, Podberesky DJ. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents. Pediatric radiology. 2015;45(11):1629-34.

    Article  PubMed  Google Scholar 

  31. Serai SD, Trout AT, Fleck RJ, Quinn CT, Dillman JR. Measuring liver T2* and cardiac T2* in a single acquisition. Abdom Radiol (NY). 2018.

  32. Towbin AJ, Serai SD, Podberesky DJ. Magnetic resonance imaging of the pediatric liver: imaging of steatosis, iron deposition, and fibrosis. Magn Reson Imaging Clin N Am. 2013;21(4):669-80.

    Article  PubMed  Google Scholar 

  33. Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood. 2009;113(20):4853-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wood JC, Pressel S, Rogers ZR, Odame I, Kwiatkowski JL, Lee MT, et al. Liver iron concentration measurements by MRI in chronically transfused children with sickle cell anemia: baseline results from the TWiTCH trial. Am J Hematol. 2015;90(9):806-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. St Pierre TG, El-Beshlawy A, Elalfy M, Al Jefri A, Al Zir K, Daar S, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med. 2014;71(6):2215-23.

    Article  CAS  PubMed  Google Scholar 

  37. Clark PR, Chua-Anusorn W, St Pierre TG. Proton transverse relaxation rate (R2) images of liver tissue; mapping local tissue iron concentrations with MRI [corrected]. Magnetic resonance in medicine. 2003;49(3):572-5.

    Article  PubMed  Google Scholar 

  38. Clark PR, St Pierre TG. Quantitative mapping of transverse relaxivity (1/T(2)) in hepatic iron overload: a single spin-echo imaging methodology. Magnetic resonance imaging. 2000;18(4):431-8.

    Article  CAS  PubMed  Google Scholar 

  39. Hallgren KA. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutorials in quantitative methods for psychology. 2012;8(1):23-34.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pirasteh A, Yuan Q, Hernando D, Reeder SB, Pedrosa I, Yokoo T. Inter-method reproducibility of biexponential R2 MR relaxometry for estimation of liver iron concentration. Magnetic resonance in medicine. 2018;80(6):2691-701.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj D. Serai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calle-Toro, J.S., Barrera, C.A., Khrichenko, D. et al. R2 relaxometry based MR imaging for estimation of liver iron content: A comparison between two methods. Abdom Radiol 44, 3058–3068 (2019). https://doi.org/10.1007/s00261-019-02074-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02074-4

Keywords

Navigation