Skip to main content
Log in

Assessment of liver fibrosis with gadoxetic acid-enhanced MRI: comparisons with transient elastography, ElastPQ, and serologic fibrosis markers

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare the diagnostic performance of gadoxetic acid-enhanced magnetic resonance imaging (MRI), ultrasonography (US)—based elastography, and serologic fibrosis markers in assessing the stage of liver fibrosis.

Materials and methods

This retrospective study included 67 patients (55 male and 12 female; mean age 62.5 years) who underwent gadoxetic acid-enhanced MRI and liver stiffness measurements before liver biopsy or surgery between January 2014 and January 2018. Measurements were performed using transient elastography (TE), ultrasound shear wave elastography point quantification (ElastPQ), and blood tests. The following MRI-based fibrosis markers were assessed: contrast enhancement index (CEI), liver–spleen contrast ratio (LSC), liver–portal vein contrast ratio (LPC), and signal intensity ratio (SIR). The diagnostic performances of fibrosis markers were compared using the area under the receiver operating characteristic curve (AUC), with histopathologic fibrosis stage as the reference standard.

Results

The fibrosis stages were F0–F1 (n = 17), F2 (n = 7), F3 (n = 20), and F4 (n = 23). MRI-based fibrosis markers negatively correlated with histologic stage: CEI (r = –0.786); LSC (r = − 0.718); LPC (r = − 0.448); and SIR (r = − 0.617; all P < 0.001). For diagnosis of either significant liver fibrosis (≥ F2) or cirrhosis (F4), the CEI provided better diagnostic accuracy (AUC = 0.898 and 0.881) than the aspartate aminotransferase-to-platelet ratio index (APRI) (AUC = 0.699 and 0.715; all P < 0.05). The CEI displayed similar diagnostic accuracy for ≥ F2 or F4 when using TE (AUC = 0.866 and 0.884, both P > 0.05) or ElastPQ [AUC = 0.751 (P = 0.021) and AUC = 0.786 (P = 0.234)].

Conclusions

The CEI measured by gadoxetic acid-enhanced MRI allows the staging of liver fibrosis, with a diagnostic accuracy comparable to that of TE and superior to that of ElastPQ or APRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MRI:

Magnetic resonance imaging

TE:

Transient elastography

ElastPQ:

Ultrasound shear wave elastography point quantification

CEI:

Contrast enhancement index

LSC:

Liver–spleen contrast ratio

LPC:

Liver–portal vein contrast ratio

SIR:

Signal intensity ratio

AUC:

Area under the receiver operating characteristic curve

APRI:

Aspartate aminotransferase-to-platelet ratio index

US:

Ultrasound

MRE:

Magnetic resonance elastography

AST:

Aspartate aminotransferase

SD:

Standard deviation

HBP:

Hepatobiliary phase

PACS:

Picture archiving and communication system

ROI:

Region-of-interest

CBD:

Common bile duct

SI:

Signal intensity

ROC:

Receiver operating characteristic

References

  1. Motosugi U, Ichikawa T, Oguri M, Sano K, Sou H, Muhi A, Matsuda M, Fujii H, Enomoto N, Araki T (2011) Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 29:1047-1052. https://doi.org/10.1016/j.mri.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, Inoue O, Yano M, Tanaka M, Fujiyama S, Nishiguchi S, Kuroki T, Imazeki F, Yokosuka O, Kinoyama S, Yamada G, Omata M (1999) Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med 131:174-181

    Article  CAS  PubMed  Google Scholar 

  3. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, Feng ZZ, Reddy KR, Schiff ER (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97:2614-2618. https://doi.org/10.1111/j.1572-0241.2002.06038.x

    Article  PubMed  Google Scholar 

  4. Bedossa P, Carrat F (2009) Liver biopsy: the best, not the gold standard. J Hepatol 50:1-3. https://doi.org/10.1016/j.jhep.2008.10.014

    Article  PubMed  Google Scholar 

  5. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD (2009) Liver biopsy. Hepatology 49:1017-1044. https://doi.org/10.1002/hep.22742

    Article  PubMed  Google Scholar 

  6. Horowitz JM, Venkatesh SK, Ehman RL, Jhaveri K, Kamath P, Ohliger MA, Samir AE, Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH (2017) Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol (NY) 42:2037-2053. https://doi.org/10.1007/s00261-017-1211-7

    Article  Google Scholar 

  7. Singh S, Venkatesh SK, Wang Z, Miller FH, Motosugi U, Low RN, Hassanein T, Asbach P, Godfrey EM, Yin M, Chen J, Keaveny AP, Bridges M, Bohte A, Murad MH, Lomas DJ, Talwalkar JA, Ehman RL (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13:440-451.e446. https://doi.org/10.1016/j.cgh.2014.09.046

    Article  PubMed  Google Scholar 

  8. Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37:544-555. https://doi.org/10.1002/jmri.23731

    Article  PubMed  PubMed Central  Google Scholar 

  9. Venkatesh SK, Ehman RL (2015) Magnetic resonance elastography of abdomen. Abdom Imaging 40:745–759. https://doi.org/10.1007/s00261-014-0315-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rockey DC, Bissell DM (2006) Noninvasive measures of liver fibrosis. Hepatology 43:S113–120. https://doi.org/10.1002/hep.21046

    Article  CAS  PubMed  Google Scholar 

  11. Kennedy P, Wagner M, Castera L, Hong CW, Johnson CL, Sirlin CB, Taouli B (2018) Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions. Radiology 286:738-763. https://doi.org/10.1148/radiol.2018170601

    Article  PubMed  Google Scholar 

  12. Asayama Y, Tajima T, Nishie A, Ishigami K, Kakihara D, Nakayama T, Okamoto D, Fujita N, Aishima S, Shirabe K, Honda H (2011) Uptake of Gd-EOB-DTPA by hepatocellular carcinoma: radiologic-pathologic correlation with special reference to bile production. Eur J Radiol 80:e243-248. https://doi.org/10.1016/j.ejrad.2010.10.032

    Article  PubMed  Google Scholar 

  13. Kobayashi S, Matsui O, Gabata T, Koda W, Minami T, Ryu Y, Kozaka K, Kitao A (2012) Relationship between signal intensity on hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MR imaging and prognosis of borderline lesions of hepatocellular carcinoma. Eur J Radiol 81:3002-3009. https://doi.org/10.1016/j.ejrad.2012.03.029

    Article  PubMed  Google Scholar 

  14. Akai H, Matsuda I, Kiryu S, Tajima T, Takao H, Watanabe Y, Imamura H, Kokudo N, Akahane M, Ohtomo K (2012) Fate of hypointense lesions on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Eur J Radiol 81:2973-2977. https://doi.org/10.1016/j.ejrad.2012.01.007

    Article  PubMed  Google Scholar 

  15. Verloh N, Haimerl M, Rennert J, Muller-Wille R, Niessen C, Kirchner G, Scherer MN, Schreyer AG, Stroszczynski C, Fellner C, Wiggermann P (2013) Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3 Tesla. Eur J Radiol 82:1710-1715. https://doi.org/10.1016/j.ejrad.2013.05.033

    Article  CAS  PubMed  Google Scholar 

  16. Ryeom HK, Kim SH, Kim JY, Kim HJ, Lee JM, Chang YM, Kim YS, Kang DS (2004) Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA. Korean J Radiol 5:231-239. https://doi.org/10.3348/kjr.2004.5.4.231

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tamada T, Ito K, Higaki A, Yoshida K, Kanki A, Sato T, Higashi H, Sone T (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80:e311-316. https://doi.org/10.1016/j.ejrad.2011.01.020

    Article  PubMed  Google Scholar 

  18. Nishie A, Asayama Y, Ishigami K, Tajima T, Kakihara D, Nakayama T, Takayama Y, Okamoto D, Taketomi A, Shirabe K, Fujita N, Obara M, Yoshimitsu K, Honda H (2012) MR prediction of liver fibrosis using a liver-specific contrast agent: Superparamagnetic iron oxide versus Gd-EOB-DTPA. J Magn Reson Imaging 36:664-671. https://doi.org/10.1002/jmri.23691

    Article  PubMed  Google Scholar 

  19. Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73:137-142. https://doi.org/10.1016/j.ejrad.2008.09.036

    Article  PubMed  Google Scholar 

  20. Lee S, Choi D, Jeong WK (2016) Hepatic enhancement of Gd-EOB-DTPA-enhanced 3 Tesla MR imaging: Assessing severity of liver cirrhosis. J Magn Reson Imaging 44:1339-1345. https://doi.org/10.1002/jmri.25288

    Article  PubMed  Google Scholar 

  21. Goshima S, Kanematsu M, Watanabe H, Kondo H, Kawada H, Moriyama N, Bae KT (2012) Gd-EOB-DTPA-enhanced MR imaging: prediction of hepatic fibrosis stages using liver contrast enhancement index and liver-to-spleen volumetric ratio. J Magn Reson Imaging 36:1148-1153. https://doi.org/10.1002/jmri.23758

    Article  PubMed  Google Scholar 

  22. Zhang W, Wang X, Miao Y, Hu C, Zhao W (2018) Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla. Abdom Radiol (NY) 43:2262-2269. https://doi.org/10.1007/s00261-018-1462-y

    Article  Google Scholar 

  23. Noda Y, Goshima S, Kajita K, Kawada H, Kawai N, Koyasu H, Matsuo M, Bae KT (2016) Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers. Eur J Radiol 85:2001-2007. https://doi.org/10.1016/j.ejrad.2016.09.003

    Article  PubMed  Google Scholar 

  24. Lin ZH, Xin YN, Dong QJ, Wang Q, Jiang XJ, Zhan SH, Sun Y, Xuan SY (2011) Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology 53:726-736. https://doi.org/10.1002/hep.24105

    Article  PubMed  Google Scholar 

  25. Motosugi U, Ichikawa T, Sou H, Sano K, Tominaga L, Kitamura T, Araki T (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30:1042-1046. https://doi.org/10.1002/jmri.21956

    Article  PubMed  Google Scholar 

  26. Bedossa P, Poynard T (1996) An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24:289-293. https://doi.org/10.1002/hep.510240201

    Article  CAS  Google Scholar 

  27. Group FMCS (1994) Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology 20:15-20

    Article  Google Scholar 

  28. Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155-163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verloh N, Utpatel K, Haimerl M, Zeman F, Fellner C, Fichtner-Feigl S, Teufel A, Stroszczynski C, Evert M, Wiggermann P (2015) Liver fibrosis and Gd-EOB-DTPA-enhanced MRI: A histopathologic correlation. Sci Rep 5:15408. https://doi.org/10.1038/srep15408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi YR, Lee JM, Yoon JH, Han JK, Choi BI (2013) Comparison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evaluation of hepatic fibrosis. Invest Radiol 48:607-613. https://doi.org/10.1097/RLI.0b013e318289ff8f

    Article  CAS  PubMed  Google Scholar 

  31. Feier D, Balassy C, Bastati N, Stift J, Badea R, Ba-Ssalamah A (2013) Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 269:460-468. https://doi.org/10.1148/radiol.13122482

    Article  PubMed  Google Scholar 

  32. Noren B, Forsgren MF, Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J, Romu T, Kechagias S, Almer S, Smedby O, Lundberg P (2013) Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 23:174-181. https://doi.org/10.1007/s00330-012-2583-2

    Article  PubMed  Google Scholar 

  33. Pascolo L, Cupelli F, Anelli PL, Lorusso V, Visigalli M, Uggeri F, Tiribelli C (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257:746-752. https://doi.org/10.1006/bbrc.1999.0454

    Article  CAS  PubMed  Google Scholar 

  34. Tsuboyama T, Onishi H, Kim T, Akita H, Hori M, Tatsumi M, Nakamoto A, Nagano H, Matsuura N, Wakasa K, Tomoda K (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging--correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255:824-833. https://doi.org/10.1148/radiol.10091557

    Article  PubMed  Google Scholar 

  35. Tsuda N, Matsui O (2010) Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi--gadoxetic acid-enhanced MR imaging. Radiology 256:767-773. https://doi.org/10.1148/radiol.10092065

    Article  PubMed  Google Scholar 

  36. van Montfoort JE, Stieger B, Meijer DK, Weinmann HJ, Meier PJ, Fattinger KE (1999) Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther 290:153-157

    PubMed  Google Scholar 

  37. Weinmann HJ, Bauer H, Frenzel T, Muhler A, Ebert W (1996) Mechanism of hepatic uptake of gadoxetate disodium. Acad Radiol 3 Suppl 2:S232-234

    Article  PubMed  Google Scholar 

  38. Lee NK, Kim S, Kim GH, Heo J, Seo HI, Kim TU, Kang DH (2012) Significance of the "delayed hyperintense portal vein sign" in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging 36:678-685. https://doi.org/10.1002/jmri.23700

    Article  PubMed  Google Scholar 

  39. Ni Y, Marchal G, Lukito G, Yu J, Muhler A, Baert AL (1994) MR imaging evaluation of liver enhancement by Gd-EOB-DTPA in selective and total bile duct obstruction in rats: correlation with serologic, microcholangiographic, and histologic findings. Radiology 190:753-758. https://doi.org/10.1148/radiology.190.3.8115623

    Article  CAS  PubMed  Google Scholar 

  40. Kim T, Murakami T, Hasuike Y, Gotoh M, Kato N, Takahashi M, Miyazawa T, Narumi Y, Monden M, Nakamura H (1997) Experimental hepatic dysfunction: evaluation by MRI with Gd-EOB-DTPA. J Magn Reson Imaging 7:683-688

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe H, Kanematsu M, Goshima S, Kondo H, Onozuka M, Moriyama N, Bae KT (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging--preliminary observations. Radiology 259:142-150. https://doi.org/10.1148/radiol.10100621

    Article  PubMed  Google Scholar 

  42. Takatsu Y, Kobayashi S, Miyati T, Shiozaki T (2016) A novel method for evaluating enhancement using gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid in the hepatobiliary phase of magnetic resonance imaging. Clin Imaging 40:1112-1117. https://doi.org/10.1016/j.clinimag.2016.07.001

    Article  PubMed  Google Scholar 

  43. Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J, Sandstrom P, Brismar TB, Smedby O, Lundberg P (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22:642-653. https://doi.org/10.1007/s00330-011-2302-4

    Article  CAS  PubMed  Google Scholar 

  44. Esterson YB, Flusberg M, Oh S, Mazzariol F, Rozenblit AM, Chernyak V (2015) Improved parenchymal liver enhancement with extended delay on Gd-EOB-DTPA-enhanced MRI in patients with parenchymal liver disease: associated clinical and imaging factors. Clin Radiol 70:723-729. https://doi.org/10.1016/j.crad.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  45. Lu Q, Lu C, Li J, Ling W, Qi X, He D, Liu J, Wen T, Wu H, Zhu H, Luo Y (2016) Stiffness Value and Serum Biomarkers in Liver Fibrosis Staging: Study in Large Surgical Specimens in Patients with Chronic Hepatitis B. Radiology 280:290-299. https://doi.org/10.1148/radiol.2016151229

    Article  PubMed  Google Scholar 

  46. Shaheen AA, Myers RP (2007) Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis C-related fibrosis: a systematic review. Hepatology 46:912-921. https://doi.org/10.1002/hep.21835

    Article  PubMed  Google Scholar 

  47. Yilmaz Y, Yonal O, Kurt R, Bayrak M, Aktas B, Ozdogan O (2011) Noninvasive assessment of liver fibrosis with the aspartate transaminase to platelet ratio index (APRI): Usefulness in patients with chronic liver disease: APRI in chronic liver disease. Hepat Mon 11:103-106

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J, Garra B, Myers RP, Wilson SR, Rubens D, Levine D (2015) Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 276:845-861. https://doi.org/10.1148/radiol.2015150619

    Article  PubMed  Google Scholar 

  49. Friedrich-Rust M, Ong MF, Martens S, Sarrazin C, Bojunga J, Zeuzem S, Herrmann E (2008) Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134:960-974. https://doi.org/10.1053/j.gastro.2008.01.034

    Article  PubMed  Google Scholar 

Download references

Funding

We declare no sources of financial support or funding received from any organization including National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hye Min.

Ethics declarations

Conflict of interest

All author declares that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was waived for retrospective nature of clinical and imaging data collection in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2245 kb)

Supplementary Figure 1. Receiver operating characteristic curves of MRI-based fibrosis markers for differentiating (a) significant liver fibrosis and (b) cirrhosis. Values were based on the liver stiffness measured with the contrast enhancement index (CEI), liver–spleen contrast ratio (LSC), liver–portal vein contrast ratio (LPC), and signal intensity ratio (SIR).

Supplementary material 2 (TIFF 2409 kb)

Supplementary material 3 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.J., Min, J.H., Lee, J.E. et al. Assessment of liver fibrosis with gadoxetic acid-enhanced MRI: comparisons with transient elastography, ElastPQ, and serologic fibrosis markers. Abdom Radiol 44, 2769–2780 (2019). https://doi.org/10.1007/s00261-019-02041-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02041-z

Keywords

Navigation