Skip to main content


Log in

Comparison of characteristic computed tomographic findings of gastrointestinal and non-gastrointestinal stromal tumors in the small intestine

  • Special Section: Distinguished Papers from JSAR
  • Published:
Abdominal Radiology Aims and scope Submit manuscript



We aimed to reveal specific findings of gastrointestinal stromal tumors (GISTs) in the small intestine on contrast-enhanced computed tomography (CT) by comparing GISTs with non-GISTs.


We enrolled 28 patients with 39 GISTs and 20 patients with 22 non-GISTs who underwent enterectomy with a preoperative diagnosis of small intestinal tumor. All lesions were diagnosed by histopathological examination. Two radiologists independently evaluated internal homogeneity, growth pattern, calcification, intratumoral hemorrhage, degeneration, ulceration, and lymphadenopathy and measured the maximum diameter of the tumor and contrast-enhanced CT (CECT) value of the solid portion as well as the diameter and CT value of the feeding artery and drainage vein on CECT in the arterial and venous phases.


Intratumoral hemorrhage was seen in 15.4% and 25.6% of GISTs and in 0% and 0% of non-GISTs (p = 0.079 and 0.010), with good interobserver agreement (κ = 0.715). The drainage vein diameter correlated well with the maximum diameter of the tumor (r = 0.744, p < 0.001). The CT value of the solid tumor part in the arterial and venous phases (p < 0.01) and the CT value of the drainage vein in the arterial phase (p < 0.05) were higher for GISTs than for non-GISTs (p < 0.01).


Strong parenchymal enhancement with the peak in the arterial phase and the CT value of the drainage vein in the arterial phase was characteristics findings of GIST compared with non-GISTs. The diameter of the drainage vein was proportional to the maximum diameter of GISTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Scola D, Bahoura L, Copelan A, et al (2017) Getting the GIST: a pictorial review of the various patterns of presentation of gastrointestinal stromal tumors on imaging. Abdom Radiol 42:1350–1364.

    Article  Google Scholar 

  2. Baheti AD, Shinagare AB, O’Neill AC, et al (2015) MDCT and clinicopathological features of small bowel gastrointestinal stromal tumours in 102 patients: A single institute experience. Br J Radiol 88.

  3. Kochhar R, Manoharan P, Leahy M, Taylor MB (2010) Imaging in gastrointestinal stromal tumours: Current status and future directions. Clin Radiol 65:584–592.

    Article  PubMed  CAS  Google Scholar 

  4. Yamamoto H, Oda Y (2015) Gastrointestinal stromal tumor: Recent advances in pathology and genetics. Pathol Int 65:9–18.

    Article  PubMed  CAS  Google Scholar 

  5. Levy AD, Remotti HE, Thompson WM, et al (2003) Gastrointestinal stromal tumors: radiologic features with pathologic correlation. Radiographics 23:283–304.

    Article  PubMed  Google Scholar 

  6. Chavalitdhamrong D, Adler DG (2015) Complications of enteroscopy: how to avoid them and manage them when they arise. Gastrointest Endosc Clin North Am 25:83–95.

    Article  Google Scholar 

  7. Romano S, De Lutio E, Rollandi GA, et al (2005) Multidetector computed tomography enteroclysis (MDCT-E) with neutral enteral and IV contrast enhancement in tumor detection. Eur Radiol 15:1178–1183.

    Article  PubMed  Google Scholar 

  8. Soyer P, Aout M, Hoeffel C, et al (2013) Helical CT-enteroclysis in the detection of small-bowel tumours: A meta-analysis. Eur Radiol 23:388–399.

    Article  PubMed  Google Scholar 

  9. Vasconcelos RN, Dolan SG, Barlow JM, et al (2017) Impact of CT enterography on the diagnosis of small bowel gastrointestinal stromal tumors. Abdom Radiol 42:1365–1373.

    Article  Google Scholar 

  10. Shinya T, Inai R, Tanaka T, et al (2017) Small bowel neoplasms: enhancement patterns and differentiation using post-contrast multiphasic multidetector CT. Abdom Radiol 42:794–801.

    Article  Google Scholar 

  11. Foo WC, Liegl-Atzwanger B, Lazar AJ (2012) Pathology of gastrointestinal stromal tumors. Clin Med Insights Pathol 23–33.

  12. Fletcher CDM, Berman JJ, Corless C, et al (2002) Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 33:459–465.

    Article  PubMed  Google Scholar 

  13. Joensuu H (2008) Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39:1411–1419.

    Article  PubMed  Google Scholar 

  14. Miettinen M Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23:70–83.

    Article  PubMed  Google Scholar 

  15. Zhou C, Duan X, Zhang X, et al (2016) Predictive features of CT for risk stratifications in patients with primary gastrointestinal stromal tumour. Eur Radiol 26:3086–3093.

    Article  PubMed  Google Scholar 

  16. Bano S, Puri SK, Upreti L, et al (2012) Gastrointestinal stromal tumors (GISTs): An imaging perspective. Jpn J Radiol 30:105–115.

    Article  PubMed  Google Scholar 

  17. Burkill GJC, Badran M, Al-Muderis O, et al (2003) Malignant Gastrointestinal Stromal Tumor: Distribution, Imaging Features, and Pattern of Metastatic Spread. Radiology 226:527–532.

    Article  PubMed  Google Scholar 

  18. Ulusan S, Koc Z, Kayaselcuk F (2008) Gastrointestinal stromal tumours: CT findings. Br J Radiol 81:618–23.

    Article  PubMed  CAS  Google Scholar 

  19. Shinagare AB, Ip IK, Lacson R, Ramaiya NH, George S KR (2015) Gastrointestinal Stromal Tumor : Optimizing the Use of Cross-sectional. Radiology 274:395–404.

    Article  PubMed  Google Scholar 

  20. DeMatteo RP, Lewis JJ, Leung D, et al (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231:51–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Teoh WC, Teo SY, Ong CL (2011) Gastrointestinal stromal tumors presenting as gynecological masses: Usefulness of multidetector computed tomography. Ultrasound Obstet Gynecol 37:107–109.

    Article  PubMed  CAS  Google Scholar 

  22. Cai PQ, Lv XF, Tian L, et al (2015) CT characterization of duodenal gastrointestinal stromal tumors. Am J Roentgenol.

  23. Jinzaki M, Tanimoto A, Mukai M, et al (2000) Double-phase helical CT of small renal parenchymal neoplasms: Correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr 24:835–842.

    Article  PubMed  CAS  Google Scholar 

  24. Braschi-Amirfarzan M, Keraliya AR, Krajewski KM, et al (2016) Role of Imaging in Management of Desmoid-type Fibromatosis: A Primer for Radiologists. RadioGraphics 36:762–782.

    Article  Google Scholar 

  25. Cai PQ, Wu YP, Xie CM, et al (2013) Hepatic angiomyolipoma: CT and MR imaging findings with clinical-pathologic comparison. Abdom Imaging 38:482–489.

    Article  PubMed  Google Scholar 

  26. Lee SJ, Kim SY, Kim KW, et al (2016) Hepatic angiomyolipoma versus hepatocellular carcinoma in the noncirrhotic liver on gadoxetic acid-enhanced MRI: A diagnostic challenge. Am J Roentgenol 207:562–570.

    Article  Google Scholar 

Download references


The authors would like to thank Enago ( for the English language review.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Akitoshi Inoue.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, A., Ota, S., Sato, S. et al. Comparison of characteristic computed tomographic findings of gastrointestinal and non-gastrointestinal stromal tumors in the small intestine. Abdom Radiol 44, 1237–1245 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: