Skip to main content
Log in

MRI evaluation of pancreatic ductal adenocarcinoma: diagnosis, mimics, and staging

  • Pictorial essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

The radiologist’s role in the evaluation of pancreatic ductal adenocarcinoma remains critical in the management of this deadly disease. Imaging plays a vital role in the diagnosis and staging of pancreatic cancer. Although CT is more commonly used for staging pancreatic cancer, MR is increasingly playing an important role in this regard. In our institution, all pancreatic malignancies undergo staging with MRI. In this pictoral essay, we illustrate the MR imaging features of pancreatic ductal adenocarcinoma and its mimics, and we also discuss pearls and pitfalls in MR staging of pancreatic carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. American Cancer Society. https://cancerstatisticscenter.cancer.org/?_ga=2.223842450.801427553.1527536019-1868478499.1527536019#!/cancer-site/Pancreas. Accessed 28 May 2018

  2. National Cancer Institute. SEER cancer statistics factsheets: pancreas cancer. http://seer.cancer.gov/statfacts/html/pancreas.html. Accessed 21 Feb 2018

  3. Croome KP, Jayaraman S, Schlachta CM (2010) Preoperative staging of cancer of the pancreatic head: is there room for improvement? Can J Surg 53:171–174

    PubMed  PubMed Central  Google Scholar 

  4. Kambadakone AR, Zaheer A, Le O, et al. (2018) Multi-institutional survey on imaging practice patterns in pancreatic ductal adenocarcinoma. Abdom Radiol 43:245–252

    Article  Google Scholar 

  5. Chen F, Ni J, Zhang Z, et al. (2016) Presurgical evaluation of pancreatic cancer: a comprehensive imaging comparison of CT vs. MRI. AJR Am J Roentgenol 206:526–535

    Article  PubMed  Google Scholar 

  6. Miller FH, Rini NJ, Keppke AL (2006) MRI of adenocarcinoma of the pancreas. Am J Roentgenol 187(4):W365–W374

    Article  Google Scholar 

  7. Kulkarni NM, Hough DM, Tolat PP, et al. (2018) Pancreatic adenocarcinoma: cross-sectional imaging techniques. Abdom Radiol 43:253–263

    Article  Google Scholar 

  8. Motosugi U, Ichikawa T, Morisaka H, et al. (2011) Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology 260(2):446–453

    Article  PubMed  Google Scholar 

  9. Bridges MD (2015) Magnetic resonance imaging of pancreatic malignancy. Transl Cancer Res 4(6):616–633

    Google Scholar 

  10. Low G, Panu A, Millo N, et al. (2011) Multimodality imaging of neoplastic and non-neoplastic solid lesions of the pancreas. Radiographics 31:993–1015

    Article  PubMed  Google Scholar 

  11. Tanaka M, Fernández-del Castillo C, Adsay V, et al. (2012) International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 12:183–197

    Article  PubMed  Google Scholar 

  12. Manfredi R, Ventriglia A, Mantovani W, et al. (2015) Mucinous cystic neoplasms and serous cystadenomas arising in the body-tail of the pancreas: MR imaging characterization. Eur Radiol 25:940–949

    Article  PubMed  Google Scholar 

  13. Kim SH, Lee JM, Lee ES, et al. (2015) Intraductal papillary mucinous neoplasms of the pancreas: evaluation of malignant potential and surgical resectability by using MR imaging with MR cholangiography. Radiology 274:723–733

    Article  PubMed  Google Scholar 

  14. Le Baleur Y, Couvelard A, Vuillierme MP, et al. (2011) Mucinous cystic neoplasms of the pancreas: definition of preoperative imaging criteria for high-risk lesions. Pancreatology 11:495–499

    Article  PubMed  Google Scholar 

  15. Gandhi NS, Feldman MK, Le O, et al. (2018) Imaging mimics of pancreatic ductal adenocarcinoma. Abdom Radiol 43:273–284

    Article  Google Scholar 

  16. Siddiqi AJ, Miller F (2007) Chronic pancreatitis: ultrasound, computed tomography, and magnetic resonance imaging features. Semin Ultrasound CT MR 28(5):384–394

    Article  PubMed  Google Scholar 

  17. Raman SP, Horton KM, Cameron JL, et al. (2013) Groove pancreatitis: spectrum of imaging findings and radiology-pathology correlation. Am J Roentgenol 201(1):2–13

    Article  Google Scholar 

  18. Blasbalg R, Baroni RH, Costa DN, et al. (2007) MRI features of groove pancreatitis. Am J Roentgenol 189:73–80

    Article  Google Scholar 

  19. Okazaki K, Uchida K, Koyabu M, et al. (2011) Recent advances in the concept and diagnosis of autoimmune pancreatitis and IgG4-related disease. J Gastroenterol 46(3):277–288

    Article  CAS  PubMed  Google Scholar 

  20. Sahani DV, Kalva SP, Farrell J, et al. (2004) Autoimmune pancreatitis: imaging features. Radiology 233:345–352

    Article  PubMed  Google Scholar 

  21. Kroft SH, Stryker SJ, Winter JN, et al. (1995) Inflammatory pseudotumor of the pancreas. Int J Pancreatol 18:277–283

    CAS  PubMed  Google Scholar 

  22. Tajima Y, Kuroki T, Tsutsumi R, et al. (2007) Pancreatic carcinoma coexisting with chronic pancreatitis vs. tumor-forming pancreatitis: diagnostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging. World J Gastroenterol 13(6):858–865

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ichikawa T, Sou H, Araki T, et al. (2001) Duct-penetratign sign at MRCP: usefulness for differentiating inflammatory pancreatic mass from pancreatic carcinomas. Radiology 221:107–116

    Article  CAS  PubMed  Google Scholar 

  24. National comprehensive cancer network clinical practice guidelines in oncology: neuroendocrine tumors version 3.2017. Accessed 13 June 2017

  25. Wang Y, Chen ZE, Yaghmai V, et al. (2011) Diffusion-weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics. J Mag Reson Imaging 33:1071–1079

    Article  Google Scholar 

  26. Jeon SK, Lee JM, Joo I, et al. (2017) Nonhypervascular pancreatic neuroendocrine tumors: differential diagnosis from pancreatic ductal adenocarcinomas at MR imaging—retrospective cross-sectional study. Radiology 284(1):77–87

    Article  PubMed  Google Scholar 

  27. Kim JH, Eun HW, Kim YJ, et al. (2016) Pancreatic neuroendocrine tumor (PNET): staging accuracy of MDCT and its diagnostic performance on PNET with uncommon CT findings from pancreatic adenocarcinoma. Eur Radiol 26:1338–1347

    Article  PubMed  Google Scholar 

  28. Marchegiani G, Andrianello S, Massignani M, et al. (2016) Solid pseudopapillary tumors of the pancreas: specific pathological features predict the likelihood of postoperative recurrence. J Surg Oncol 114(5):597–601

    Article  PubMed  Google Scholar 

  29. Beutow PC, Buck JL, Pantongrag-Brown L, et al. (1996) Solid and papillary epithelial neoplasm of the pancreas: imaging-pathologic correlation on 56 cases. Radiology 199(3):707–711

    Article  Google Scholar 

  30. Ganashan DM, Paulson E, Tamm EP, et al. (2013) Solid pseudopapillary tumors of the pancreas: current update. Abdom Imaging 38:1373–1382

    Article  Google Scholar 

  31. Barral M, Faraoun SA, Fishman EK, et al. (2016) Imaging features of rare pancreatic tumors. Diagnos Interv Imaging 97:1259–1273

    Article  CAS  Google Scholar 

  32. Tatli S, Mortele KJ, Levy AD, et al. (2005) CT and MRI features of pure acinar cell carcinoma of the pancreas. Am J Roentgenol 184:511–519

    Article  Google Scholar 

  33. Steinman J, Zaheer A, Kluger MD, et al. (2018) Rare pancreatic tumors. Abdom Radiol 43:285–300

    Article  Google Scholar 

  34. Dawson IM, Cornes JS, Morson BC (1961) Primary malignant lymphoid tumors of the intestinal tract. Report of 37 cases with a study of factors influencing prognosis. Br J Surg 49:80–89

    Article  CAS  PubMed  Google Scholar 

  35. Merkle EM, Bender GN, Brambs HJ (2000) Imaging findings in pancreatic lymphoma: differential aspects. Am J Roentgenol 174(3):671–675

    Article  CAS  Google Scholar 

  36. Tsitouridis I, Diamantopoulou A, Michaelides M, et al. (2010) Pancreatic metastases: CT and MRI findings. Diagnos Interv Radiol 16(1):45–51

    Google Scholar 

  37. Ahmed S, Johnson PT, Hruban R, et al. (2013) Metastatic disease to the pancreas: pathologic spectrum and CT patterns. Abdom Imaging 38:144–153

    Article  PubMed  Google Scholar 

  38. Nikolaidis P, Hammond NA, Day K, et al. (2014) Imaging features of benign and malignant ampullary and periampullary lesions. Radiographics 34:624–641

    Article  PubMed  Google Scholar 

  39. Kim TU, Kim S, Lee JW, et al. (2008) Ampulla of Vater: comprehensive anatomy, MR imaging of pathologic conditions, and correlation with endoscopy. Eur J Radiol 66(1):48–64

    Article  PubMed  Google Scholar 

  40. Kim JH, Kim MJ, Chun JJ, et al. (2002) Differential diagnosis of periampullary carcinomas at MR imaging. Radiographics 22(6):1335–1352

    Article  PubMed  Google Scholar 

  41. AJCC Cancer Staging Manual (2016) 8th edn. Springer, ISBN 978-3-319-40617-6.

  42. Soloff EV, Zaheer A, Meier J, et al. (2018) Staging of pancreatic cancer: resectable, borderline resectable, and unresectable disease. Abdom Radiol 43:301–313

    Article  Google Scholar 

  43. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf.

  44. Al-Hawary MM, Francis IR, Chari ST, et al. (2014) Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 270(1):248–260

    Article  PubMed  Google Scholar 

  45. Fonseca AL, Fleming JB (2018) Surgery for pancreatic cancer: critical radiologic findings for clinical decision making. Abdom Radiol 43:374–382

    Article  Google Scholar 

  46. Javid AA, Bleich K, Bagante F, et al. (2017) Pancreaticoduodenectomy with venous resection and reconstruction: current surgical techniques and associated postoperative imaging findings. Abdom Radiol . https://doi.org/10.1007/s00261-017-1290-5

    Article  Google Scholar 

  47. Chang ST, Jeffrey RB, Patel BN, et al. (2016) Preoperative multidetector CT diagnosis of extrapancreatic perineural or duodenal invasion is associated with reduced postoperative survival after pancreaticoduodenectomy for pancreatic adenocarcinoma: preliminary experience and implications for patient care. Radiology 281:816–825

    Article  PubMed  Google Scholar 

  48. Patel BN, Olcott E, Jeffrey RB (2018) Extrapancreatic perineural invasion in pancreatic adenocarcinoma. Abdom Radiol 43:323–331

    Article  Google Scholar 

  49. Patel BN, Olcott EW, Jeffrey RB (2018) Duodenal invasion by pancreatic adenocarcinoma: MDCT diagnosis of an aggressive imaging phenotype and its clinical implications. Abdom Radiol 43:332–339

    Article  Google Scholar 

  50. Holzapfel K, Reiser-Erkan C, Fingerle AA, et al. (2011) Comparison of diffusion-weighted MR imaging and multidetector-row CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom Imaging 36:179–184

    Article  PubMed  Google Scholar 

  51. Bhalla M, Aldakkak M, Kulkarni NM, et al. (2018) Characterizing indeterminate liver lesion in patients with localized pancreatic cancer at the time of diagnosis. Abdom Radiol 43:351–363

    Article  Google Scholar 

  52. Low RN, Carter WD, Saleh F, et al. (1995) Ovarian cancer: comparison of findings with perfluorocarbon-enhanced MR imaging, In-111-CYT-103 immunotherapy, and CT. Radiology 195(2):391–400

    Article  CAS  PubMed  Google Scholar 

  53. Low RN (2007) MR imaging of the peritoneal spread of malignancy. Abdom Imaging 32:267–283

    Article  PubMed  Google Scholar 

  54. Baliyan V, Kordbacheh H, Parakh A, et al. (2018) Response assessment in pancreatic ductal adenocarcinoma: role of imaging. Abdom Radiol 43:435–444

    Article  Google Scholar 

  55. Hammel P, Huguet F, van Laethem JL, et al. (2016) Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial. JAMA 315(17):1844–1853

    Article  CAS  PubMed  Google Scholar 

  56. Bergquist JR, Puig CA, Shubert CR, et al. (2016) Carbohydrate antigen 19-9 elevation in anatomically resectable, early stage pancreatic cancer is independently associated with decreased overall survival and an indication for neoadjuvant therapy: a national cancer database study. J Am Coll Surg 223(1):52–65

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Mellena Bridges for inspiration and Dr. David DiSantis for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Bowman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

CME activity

This article has been selected as the CME activity for the current month. Please visit https://ce.mayo.edu/node/78562 and follow the instructions to complete this CME activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowman, A.W., Bolan, C.W. MRI evaluation of pancreatic ductal adenocarcinoma: diagnosis, mimics, and staging. Abdom Radiol 44, 936–949 (2019). https://doi.org/10.1007/s00261-018-1686-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1686-x

Keywords

Navigation