Abbreviated mpMRI protocol for diffuse liver disease: a practical approach for evaluation and follow-up of NAFLD

  • Guilherme Moura Cunha
  • Cristiane A. Villela-Nogueira
  • Anke Bergman
  • Flavia Paiva Proença Lobo Lopes
Article

Abstract

Aim

Multiparametric magnetic resonance imaging (mpMRI) may help determine the metabolic profile of patients with obesity and metabolic syndrome in addition to their clinical and laboratory biomarkers for diagnosis and monitoring. An abbreviated mpMRI protocol may be a faster, less-costly, and easier to perform alternative for the diagnosis, treatment, and follow-up of patients with NAFLD and for use in clinical trials.

Objective

To evaluate an abbreviated mpMRI protocol tailored to analyze quantitative imaging features of patients with obesity and NAFLD and assess its use during treatment.

Methods

This prospective study included patients with obesity and NAFLD to perform a quantitative analysis of liver fat and iron content, stiffness, as well as the visceral adipose tissue (VAT) during the course of a physical exercise-based treatment regimen.

Results

Longitudinal improvements in imaging features were observed in patients with good response to treatment, in accordance with improvements in biochemical and anthropometric biomarkers.

Conclusion

An abbreviated mpMRI protocol consisting of liver fat and iron quantification, MR elastography, and VAT measurements is a feasible, less-costly, and accessible option for screening and monitoring of patients with obesity, NAFLD, and metabolic syndrome.

Keywords

Liver Nonalcoholic fatty liver disease Visceral adipose tissue mpMRI Quantitative imaging Magnetic resonance elastography 

Notes

Compliance with ethical standards

Funding

This study was done without any external funding. All data were prospectively collected from patients who underwent clinically indicated MRI at our institution and authors received no funding regarding their work in this manuscript.

Conflicts of interest

All authors involved in this work declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Koplay M, Sivri M, Erdogan H, Nayman A (2015) Importance of imaging and recent developments in diagnosis of nonalcoholic fatty liver disease. World J Hepatol 7(5):769–776.  https://doi.org/10.4254/wjh.v7.i5.769 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mikolasevic I, Milic S, Turk Wensveen T, et al. (2016) Nonalcoholic fatty liver disease—a multisystem disease? World J Gastroenterol 22(43):9488–9505CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pais R, Barritt AS, Calmus Y, et al. (2016) NAFLD and liver transplantation: current burden and expected challenges. J Hepatol 65(6):1245–1257.  https://doi.org/10.1016/j.jhep.2016.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vaishnav B, Bamanikar A, Maske P, Reddy A, Dasgupta S (2017) Gastroesophageal reflux disease and its association with body mass index: Clinical and Endoscopic Study. J Clin Diagn Res 11(4):OC01–OC04.  https://doi.org/10.7860/JCDR/2017/24151.9562 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Adams LA, Anstee QM (2016) A fatty liver leads to a broken heart? J Hepatol 65(1):14–16.  https://doi.org/10.1016/j.jhep.2016.03.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Yin M, Glaser KJ, Manduca A, et al. (2017) Distinguishing between hepatic inflammation and fibrosis with MR elastography. Radiology 284(3):694–705.  https://doi.org/10.1148/radiol.2017160622 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Perazzo H, Dufour JF (2017) The therapeutic landscape of non-alcoholic steatohepatitis. Liver Int 37(5):634–647.  https://doi.org/10.1111/liv.13270 CrossRefPubMedGoogle Scholar
  8. 8.
    Saadeh S, Younossi ZM, Remer EM, et al. (2002) The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 123(3):745–750CrossRefPubMedGoogle Scholar
  9. 9.
    Imajo K, Kessoku T, Honda Y, et al. (2016) Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 150(3):626–637.  https://doi.org/10.1053/j.gastro.2015.11.048 CrossRefPubMedGoogle Scholar
  10. 10.
    Loomba R, Wolfson T, Ang B, et al. (2014) Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology 60(6):1920–1928.  https://doi.org/10.1002/hep.27362 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34(4):729–749CrossRefPubMedGoogle Scholar
  12. 12.
    Yokoo T, Serai SD, Pirasteh A, et al. (2017) Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology 11:170550.  https://doi.org/10.1148/radiol.2017170550 Google Scholar
  13. 13.
    Patel J, Bettencourt R, Cui J, et al. (2016) Association of noninvasive quantitative decline in liver fat content on MRI with histologic response in nonalcoholic steatohepatitis. Ther Adv Gastroenterol 9(5):692–701.  https://doi.org/10.1177/1756283X16656735 CrossRefGoogle Scholar
  14. 14.
    Middleton MS, Heba ER, Hooker CA, et al. (2017) Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology 153(3):753–761.  https://doi.org/10.1053/j.gastro.2017.06.005 CrossRefPubMedGoogle Scholar
  15. 15.
    George DKGS, MacDonald GA, Cowley LL, et al. (1998) Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 114(2):311–318CrossRefPubMedGoogle Scholar
  16. 16.
    Chalasani N, Younossi Z, Lavine JE, et al. (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67(1):328–357.  https://doi.org/10.1002/hep.29367 CrossRefPubMedGoogle Scholar
  17. 17.
    Arrigo T, Leonardi S, Cuppari C, et al. (2015) Role of the diet as a link between oxidative stress and liver diseases. World J Gastroenterol 21(2):384–395.  https://doi.org/10.3748/wjg.v21.i2.384 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grgurevic I, Puljiz Z, Brnic D, et al. (2015) Liver and spleen stiffness and their ratio assessed by real-time two dimensional-shear wave elastography in patients with liver fibrosis and cirrhosis due to chronic viral hepatitis. Eur Radiol 25(11):3214–3221.  https://doi.org/10.1007/s00330-015-3728-x CrossRefPubMedGoogle Scholar
  19. 19.
    Bota S, Sporea I, Sirli R, et al. (2014) Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of acoustic radiation force impulse (ARFI) elastography–analysis of a cohort of 1,031 subjects. Eur J Radiol 83(2):268–272.  https://doi.org/10.1016/j.ejrad.2013.11.019 CrossRefPubMedGoogle Scholar
  20. 20.
    Foucher J, Castéra L, Bernard PH, et al. (2006) Prevalence and factors associated with failure of liver stiffness measurement using FibroScan in a prospective study of 2114 examinations. Eur J Gastroenterol Hepatol 18(4):411–412CrossRefPubMedGoogle Scholar
  21. 21.
    Ichikawa S, Motosugi U, Ichikawa T, et al. (2012) Magnetic resonance elastography for staging liver fibrosis in chronic hepatitis C. Magn Reson Med Sci 11(4):291–297CrossRefPubMedGoogle Scholar
  22. 22.
    Yin M, Glaser KJ, Talwalkar JA, et al. (2016) Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations. Radiology 278(1):114–124.  https://doi.org/10.1148/radiol.2015142141 CrossRefPubMedGoogle Scholar
  23. 23.
    Cui J, Heba E, Hernandez C, et al. (2016) Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology 63(2):453–461.  https://doi.org/10.1002/hep.28337 CrossRefPubMedGoogle Scholar
  24. 24.
    Yoon JH, Lee JM, Joo I, et al. (2014) Hepatic fibrosis: prospective comparison of MR elastography and US shear-wave elastography for evaluation. Radiology 273(3):772–782.  https://doi.org/10.1148/radiol.14132000 CrossRefPubMedGoogle Scholar
  25. 25.
    Bohte AE, de Niet A, Jansen L, et al. (2014) Non-invasive evaluation of liver fibrosis: a comparison of ultrasound-based transient elastography and MR elastography in patients with viral hepatitis B and C. Eur Radiol 24(3):638–648.  https://doi.org/10.1007/s00330-013-3046-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Cui J, Ang B, Haufe W, et al. (2015) Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: a prospective study. Aliment Pharmacol Ther 41(12):1271–1280.  https://doi.org/10.1111/apt.13196 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Middleton MS, Haufe W, Hooker J, et al. (2017) Quantifying abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction: repeatability and accuracy of an MR imaging-based, semiautomated analysis method. Radiology 283(2):438–449.  https://doi.org/10.1148/radiol.2017160606 CrossRefPubMedGoogle Scholar
  28. 28.
    den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA (2004) Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol 24(4):644–649CrossRefGoogle Scholar
  29. 29.
    Lee S, Kuk JL, Kim Y, Arslanian SA (2011) Measurement site of visceral adipose tissue and prediction of metabolic syndrome in youth. Pediatr Diabetes 12(3 Pt 2):250–257.  https://doi.org/10.1111/j.1399-5448.2010.00705.x CrossRefPubMedGoogle Scholar
  30. 30.
    Pinho CPS, Diniz ADS, Arruda IKG, Leite A, Rodrigues IG (2017) Effects of weight loss on adipose visceral and subcutaneous tissue in overweight adults. Clin Nutr .  https://doi.org/10.1016/j.clnu.2017.05.011 PubMedGoogle Scholar
  31. 31.
    Perseghin G (2011) Lipids in the wrong place: visceral fat and nonalcoholic steatohepatitis. Diabetes Care 34(Suppl 2):S367–S370.  https://doi.org/10.2337/dc11-s249 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bahl M, Qayyum A, Westphalen AC, et al. (2008) Liver steatosis: investigation of opposed-phase T1-weighted liver MR signal intensity loss and visceral fat measurement as biomarkers. Radiology 249(1):160–166.  https://doi.org/10.1148/radiol.2491071375 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Irlbeck T, Massaro JM, Bamberg F, et al. (2010) Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond) 34(4):781–787.  https://doi.org/10.1038/ijo.2009.279 CrossRefGoogle Scholar
  34. 34.
    Despres JP (2012) Body fat distribution and risk of cardiovascular disease: an update. Circulation 126(10):1301–1313.  https://doi.org/10.1161/CIRCULATIONAHA.111.067264 CrossRefPubMedGoogle Scholar
  35. 35.
    Ulbrich EJ, Nanz D, Leinhard OD, Marcon M, Fischer MA (2018) Whole-body adipose tissue and lean muscle volumes and their distribution across gender and age: MR-derived normative values in a normal-weight Swiss population. Magn Reson Med 79(1):449–458.  https://doi.org/10.1002/mrm.26676 CrossRefPubMedGoogle Scholar
  36. 36.
    Middleton MS, Haufe W, Hooker J, et al. (2017) Quantifying abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction: repeatability and accuracy of an MR imaging-based, semiautomated analysis method. Radiology 283(2):438–449.  https://doi.org/10.1148/radiol.2017160606 CrossRefPubMedGoogle Scholar
  37. 37.
    Lin X, Zhang X, Guo J, et al. (2015) Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 4(7):e002014.  https://doi.org/10.1161/JAHA.115.002014 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    De Salles BF, Simao R, Fleck SJ, et al. (2010) Effects of resistance training on cytokines. Int J Sports Med 31(7):441–450.  https://doi.org/10.1055/s-0030-1251994 CrossRefPubMedGoogle Scholar
  39. 39.
    Jurca R, Lamonte MJ, Barlow CE, et al. (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37:1849–1855CrossRefPubMedGoogle Scholar
  40. 40.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466.  https://doi.org/10.1097/COH.0b013e32833ed177 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jensen MD, Ryan DH, Apovian CM, et al. (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 129(25 Suppl 2):S102–S138.  https://doi.org/10.1161/01.cir.0000437739.71477.ee CrossRefPubMedGoogle Scholar
  42. 42.
    NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US). (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: The Evidence Report. Bethesda (MD): National Heart, Lung, and Blood Institute. Chapter 5—summary of recommendations Section C: goals of weight loss. https://www.ncbi.nlm.nih.gov/books/NBK2003/
  43. 43.
    Schwenzer NF, Machann J, Haap MM, et al. (2008) T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 43(12):854–860.  https://doi.org/10.1097/RLI.0b013e3181862413 CrossRefPubMedGoogle Scholar
  44. 44.
    Kuhn JP, Meffert P, Heske C, et al. (2017) Prevalence of fatty liver disease and hepatic iron overload in a Northeastern German population by using quantitative MR imaging. Radiology 284(3):706–716.  https://doi.org/10.1148/radiol.2017161228 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ginès P, Graupera I, Lammert F, et al. (2016) Screening for liver fibrosis in the general population: a call for action. Lancet Gastroenterol Hepatol 1(3):256–260.  https://doi.org/10.1016/S2468-1253(16)30081-4 CrossRefPubMedGoogle Scholar
  46. 46.
    Banerjee R, Pavlides M, Tunnicliffe EM, et al. (2014) Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 60(1):69–77.  https://doi.org/10.1016/j.jhep.2013.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pavlides M, Banerjee R, Tunnicliffe EM, et al. (2017) Multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease severity. Liver Int 37(7):1065–1073.  https://doi.org/10.1111/liv.13284 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pavlides M, Banerjee R, Sellwood J, et al. (2016) Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol 64(2):308–315.  https://doi.org/10.1016/j.jhep.2015.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mozes FE, Tunnicliffe EM, Pavlides M, Robson MD (2016) Influence of fat on liver T1 measurements using modified look-locker inversion recovery (MOLLI) methods at 3T. J Magn Reson Imaging 44(1):105–111.  https://doi.org/10.1002/jmri.25146 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shen W, Chen J, Gantz M, et al. (2012) A single MRI slice does not accurately predict visceral and subcutaneous adipose tissue changes during weight loss. Obesity (Silver Spring) 20(12):2458–2463.  https://doi.org/10.1038/oby.2012.168 CrossRefGoogle Scholar
  51. 51.
    Chen J, Talwalkar JA, Yin M, et al. (2011) Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 259(3):749–756.  https://doi.org/10.1148/radiol.11101942 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Leitao HS, Doblas S, Garteiser P, et al. (2017) Hepatic fibrosis, inflammation, and steatosis: influence on the MR viscoelastic and diffusion parameters in patients with chronic liver disease. Radiology 283(1):98–107.  https://doi.org/10.1148/radiol.2016151570 CrossRefPubMedGoogle Scholar
  53. 53.
    Patel NS, Doycheva I, Peterson MR, et al. (2015) Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 13(3):561–568.  https://doi.org/10.1016/j.cgh.2014.08.039 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guilherme Moura Cunha
    • 1
  • Cristiane A. Villela-Nogueira
    • 2
  • Anke Bergman
    • 3
  • Flavia Paiva Proença Lobo Lopes
    • 1
  1. 1.Clínica de Diagnóstico por Imagem – CDPI/DASARio de JaneiroBrazil
  2. 2.Faculdade de Medicina, Departamento de Clínica Médica, Serviço de HepatologiaUniversidade Federal do Rio De JaneiroRio de JaneiroBrazil
  3. 3.Instituto Nacional de Câncer (INCA)Rio de JaneiroBrazil

Personalised recommendations