Abdominal Radiology

, Volume 43, Issue 4, pp 998–1012 | Cite as

Practical advantages of contrast-enhanced ultrasound in abdominopelvic radiology

  • Praveen Ganti Ranganath
  • Michelle L. Robbin
  • Susan J. Back
  • Edward G. Grant
  • David T. Fetzer


Computed tomography (CT) and magnetic resonance imaging (MRI) are two of the workhorse modalities of abdominopelvic radiology. However, these modalities are not without patient- and technique-specific limitations that may prevent a timely and accurate diagnosis. Contrast-enhanced ultrasound (CEUS) is an effective, rapid, and cost-effective imaging modality with expanding clinical utility in the United States. In this pictorial essay, we provide a case-based discussion demonstrating the practical advantages of CEUS in evaluating a variety of pathologies in which CT or MRI was precluded or insufficient. Through these advantages, CEUS can serve a complementary role with CT and MRI in comprehensive abdominopelvic radiology.


Ultrasound Contrast CEUS Contrast allergy Renal dysfunction 


Compliance with ethical standards

Research involving human rights

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was not required.


No funding was received for this work. No author reports relevant conflicts of interest. DTF has a research agreement with Philips Ultrasound, and is on the speaker’s bureau for Philips Ultrasound. EGG has a research grant from GE.

Supplementary material

Supplementary material 1 (MP4 7453 kb)

Supplementary material 2 (MP4 11526 kb)

261_2017_1442_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 14 kb)


  1. 1.
    Mattrey RF, Scheible FW, Gosink BB, et al. (1982) Perfluoroctylbromide: a liver/spleen-specific and tumor-imaging ultrasound contrast material. Radiology 145(3):759–762. CrossRefPubMedGoogle Scholar
  2. 2.
    Mattrey RF, Strich G, Shelton RE, et al. (1987) Perfluorochemicals as US contrast agents for tumor imaging and hepatosplenography: preliminary clinical results. Radiology 163(2):339–343. CrossRefPubMedGoogle Scholar
  3. 3.
    First Approval by U.S. Food and Drug Administration for Contrast Enhanced Ultrasonography of the Liver Received by Bracco Diagnostics Inc. for LUMASON® (sulfur hexafluoride lipid-type A microspheres) for injectable suspension, for intravenous use (2016). Bracco Diagnostics Inc., Monroe TownshipGoogle Scholar
  4. 4.
    ACR Committee on Drugs and Contrast Media (2016) ACR manual on contrast media v10.2. ACR website. Accessed 20 Sep 2017
  5. 5.
    Benozzi L, Cappelli G, Granito M, et al. (2009) Contrast-enhanced sonography in early kidney graft dysfunction. Transplant Proc 41(4):1214–1215. CrossRefPubMedGoogle Scholar
  6. 6.
    Lemy AA, del Marmol V, Kolivras A, et al. (2010) Revisiting nephrogenic systemic fibrosis in 6 kidney transplant recipients: a single-center experience. J Am Acad Dermatol 63(3):389–399. CrossRefPubMedGoogle Scholar
  7. 7.
    Abbas FM, Julie BM, Sharma A, Halawa A (2016) “Contrast nephropathy” in renal transplantation: is it real? World J Transplant 6(4):682–688. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cheungpasitporn W, Thongprayoon C, Mao MA, et al. (2017) Contrast-induced acute kidney injury in kidney transplant recipients: a systematic review and meta-analysis. World J Transplant 7(1):81–87. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Haider M, Yessayan L, Venkat KK, et al. (2015) Incidence of contrast-induced nephropathy in kidney transplant recipients. Transplant Proc 47(2):379–383. CrossRefPubMedGoogle Scholar
  10. 10.
    Jin Y, Yang C, Wu S, et al. (2015) A novel simple noninvasive index to predict renal transplant acute rejection by contrast-enhanced ultrasonography. Transplantation 99(3):636–641. CrossRefPubMedGoogle Scholar
  11. 11.
    Wang X, Yu Z, Guo R, Yin H, Hu X (2015) Assessment of postoperative perfusion with contrast-enhanced ultrasonography in kidney transplantation. Int J Clin Exp Med 8(10):18399–18405PubMedPubMedCentralGoogle Scholar
  12. 12.
    Harvey CJ, Alsafi A, Kuzmich S, et al. (2015) Role of US contrast agents in the assessment of indeterminate solid and cystic lesions in native and transplant kidneys. Radiographics 35(5):1419–1430. CrossRefPubMedGoogle Scholar
  13. 13.
    McCarville MB, Kaste SC, Hoffer FA, et al. (2012) Contrast-enhanced sonography of malignant pediatric abdominal and pelvic solid tumors: preliminary safety and feasibility data. Pediatr Radiol 42(7):824–833. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Piscaglia F, Bolondi L, Italian Society for Ultrasound in M, Biology Study Group on Ultrasound Contrast A (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375. CrossRefPubMedGoogle Scholar
  15. 15.
    Yusuf GT, Sellars ME, Deganello A, Cosgrove DO, Sidhu PS (2017) Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol 208(2):446–452. CrossRefPubMedGoogle Scholar
  16. 16.
    Bracco Diagnostics Inc. (2016) Lumason prescribing information. Lumason website. Accessed 20 Sep 2017
  17. 17.
    Sawhney S, Wilson SR (2017) Can ultrasound with contrast enhancement replace nonenhanced computed tomography scans in patients with contraindication to computed tomography contrast agents? Ultrasound Q 33(2):125–132. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zarzour JG, Lockhart ME, West J, et al. (2017) Contrast-enhanced ultrasound classification of previously indeterminate renal lesions. J Ultrasound Med . PubMedGoogle Scholar
  19. 19.
    Averkiou M, Powers J, Skyba D, Bruce M, Jensen S (2003) Ultrasound contrast imaging research. Ultrasound Q 19(1):27–37CrossRefPubMedGoogle Scholar
  20. 20.
    de Jong N, Bouakaz A, Frinking P (2002) Basic acoustic properties of microbubbles. Echocardiography 19(3):229–240CrossRefPubMedGoogle Scholar
  21. 21.
    Chiorean L, Caraiani C, Radzina M, et al. (2015) Vascular phases in imaging and their role in focal liver lesions assessment. Clin Hemorheol Microcirc 62(4):299–326. CrossRefPubMedGoogle Scholar
  22. 22.
    D’Onofrio M, Crosara S, De Robertis R, Canestrini S, Mucelli RP (2015) Contrast-enhanced ultrasound of focal liver lesions. AJR Am J Roentgenol 205(1):W56–W66. CrossRefPubMedGoogle Scholar
  23. 23.
    Trillaud H, Bruel JM, Valette PJ, et al. (2009) Characterization of focal liver lesions with SonoVue-enhanced sonography: international multicenter-study in comparison to CT and MRI. World J Gastroenterol 15(30):3748–3756CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wilson SR, Kim TK, Jang HJ, Burns PN (2007) Enhancement patterns of focal liver masses: discordance between contrast-enhanced sonography and contrast-enhanced CT and MRI. AJR Am J Roentgenol 189(1):W7–W12. CrossRefPubMedGoogle Scholar
  25. 25.
    Barreiros AP, Piscaglia F, Dietrich CF (2012) Contrast enhanced ultrasound for the diagnosis of hepatocellular carcinoma (HCC): comments on AASLD guidelines. J Hepatol 57(4):930–932. CrossRefPubMedGoogle Scholar
  26. 26.
    Furlan A, Marin D, Cabassa P, et al. (2012) Enhancement pattern of small hepatocellular carcinoma (HCC) at contrast-enhanced US (CEUS), MDCT, and MRI: intermodality agreement and comparison of diagnostic sensitivity between 2005 and 2010 American Association for the Study of Liver Diseases (AASLD) guidelines. Eur J Radiol 81(9):2099–2105. CrossRefPubMedGoogle Scholar
  27. 27.
    Hanna RF, Miloushev VZ, Tang A, et al. (2016) Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular carcinoma. Abdom Radiol 41(1):71–90 ((NY)). CrossRefGoogle Scholar
  28. 28.
    Jang HJ, Kim TK, Burns PN, Wilson SR (2015) CEUS: an essential component in a multimodality approach to small nodules in patients at high-risk for hepatocellular carcinoma. Eur J Radiol 84(9):1623–1635. CrossRefPubMedGoogle Scholar
  29. 29.
    Loria F, Loria G, Basile S, et al. (2016) Role of contrast-enhanced ultrasound in the evaluation of vascularization of hepatocellular carcinoma. Hepatoma Research . Google Scholar
  30. 30.
    Mitchell DG, Bruix J, Sherman M, Sirlin CB (2015) LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 61(3):1056–1065. CrossRefPubMedGoogle Scholar
  31. 31.
    Nicolau C, Catala V, Vilana R, et al. (2004) Evaluation of hepatocellular carcinoma using SonoVue, a second generation ultrasound contrast agent: correlation with cellular differentiation. Eur Radiol 14(6):1092–1099. CrossRefPubMedGoogle Scholar
  32. 32.
    Rajesh S, Mukund A, Arora A, Jain D, Sarin SK (2013) Contrast-enhanced US-guided radiofrequency ablation of hepatocellular carcinoma. J Vasc Interv Radiol 24(8):1235–1240. CrossRefPubMedGoogle Scholar
  33. 33.
    Sangiovanni A, Manini MA, Iavarone M, et al. (2010) The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut 59(5):638–644. CrossRefPubMedGoogle Scholar
  34. 34.
    Chen LD, Xu HX, Xie XY, et al. (2008) Enhancement patterns of intrahepatic cholangiocarcinoma: comparison between contrast-enhanced ultrasound and contrast-enhanced CT. Br J Radiol 81(971):881–889. CrossRefPubMedGoogle Scholar
  35. 35.
    Chen LD, Xu HX, Xie XY, et al. (2010) Intrahepatic cholangiocarcinoma and hepatocellular carcinoma: differential diagnosis with contrast-enhanced ultrasound. Eur Radiol 20(3):743–753. CrossRefPubMedGoogle Scholar
  36. 36.
    D’Onofrio M, Vecchiato F, Cantisani V, et al. (2008) Intrahepatic peripheral cholangiocarcinoma (IPCC): comparison between perfusion ultrasound and CT imaging. Radiol Med 113(1):76–86. CrossRefPubMedGoogle Scholar
  37. 37.
    Galassi M, Iavarone M, Rossi S, et al. (2013) Patterns of appearance and risk of misdiagnosis of intrahepatic cholangiocarcinoma in cirrhosis at contrast enhanced ultrasound. Liver Int 33(5):771–779. CrossRefPubMedGoogle Scholar
  38. 38.
    Han J, Liu Y, Han F, et al. (2015) The degree of contrast washout on contrast-enhanced ultrasound in distinguishing intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Ultrasound Med Biol 41(12):3088–3095. CrossRefPubMedGoogle Scholar
  39. 39.
    Kong WT, Wang WP, Zhang WW, et al. (2014) Contribution of contrast-enhanced sonography in the detection of intrahepatic cholangiocarcinoma. J Ultrasound Med 33(2):215–220. CrossRefPubMedGoogle Scholar
  40. 40.
    Li R, Yuan MX, Ma KS, et al. (2014) Detailed analysis of temporal features on contrast enhanced ultrasound may help differentiate intrahepatic cholangiocarcinoma from hepatocellular carcinoma in cirrhosis. PLoS ONE 9(5):e98612. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lu Q, Xue LY, Wang WP, Huang BJ, Li CX (2015) Dynamic enhancement pattern of intrahepatic cholangiocarcinoma on contrast-enhanced ultrasound: the correlation with cirrhosis and tumor size. Abdom Imaging 40(6):1558–1566. CrossRefPubMedGoogle Scholar
  42. 42.
    Wildner D, Bernatik T, Greis C, et al. (2015) CEUS in hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in 320 patients—early or late washout matters: a subanalysis of the DEGUM multicenter trial. Ultraschall Med 36(2):132–139. CrossRefPubMedGoogle Scholar
  43. 43.
    Wildner D, Pfeifer L, Goertz RS, et al. (2014) Dynamic contrast-enhanced ultrasound (DCE-US) for the characterization of hepatocellular carcinoma and cholangiocellular carcinoma. Ultraschall Med 35(6):522–527. CrossRefPubMedGoogle Scholar
  44. 44.
    Xu HX, Chen LD, Liu LN, et al. (2012) Contrast-enhanced ultrasound of intrahepatic cholangiocarcinoma: correlation with pathological examination. Br J Radiol 85(1016):1029–1037. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yuan MX, Li R, Zhang XH, et al. (2016) Factors affecting the enhancement patterns of intrahepatic cholangiocarcinoma (ICC) on contrast-enhanced ultrasound (CEUS) and their pathological correlations in patients with a single lesion. Ultraschall Med 37(6):609–618. PubMedGoogle Scholar
  46. 46.
    Barr RG (2017) Is there a need to modify the Bosniak renal mass classification with the addition of contrast-enhanced sonography? J Ultrasound Med 36(5):865–868. CrossRefPubMedGoogle Scholar
  47. 47.
    Malhi H, Grant EG, Duddalwar V (2014) Contrast-enhanced ultrasound of the liver and kidney. Radiol Clin N Am 52(6):1177–1190. CrossRefPubMedGoogle Scholar
  48. 48.
    Schneider A, Johnson L, Goodwin M, Schelleman A, Bellomo R (2011) Bench-to-bedside review: contrast enhanced ultrasonography—a promising technique to assess renal perfusion in the ICU. Crit Care 15(3):157. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lv F, Ning Y, Zhou X, et al. (2014) Effectiveness of contrast-enhanced ultrasound in the classification and emergency management of abdominal trauma. Eur Radiol 24(10):2640–2648. CrossRefPubMedGoogle Scholar
  50. 50.
    Westwood M, Joore M, Grutters J, et al. (2013) Contrast-enhanced ultrasound using SonoVue(R) (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis. Health Technol Assess 17(16):1–243. CrossRefGoogle Scholar
  51. 51.
    Smajerova M, Petrasova H, Little J, et al. (2016) Contrast-enhanced ultrasonography in the evaluation of incidental focal liver lesions: a cost-effectiveness analysis. World J Gastroenterol 22(38):8605–8614. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chung YE, Kim KW (2015) Contrast-enhanced ultrasonography: advance and current status in abdominal imaging. Ultrasonography 34(1):3–18. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Praveen Ganti Ranganath
    • 1
  • Michelle L. Robbin
    • 2
  • Susan J. Back
    • 3
  • Edward G. Grant
    • 4
  • David T. Fetzer
    • 1
  1. 1.Division of Abdominal Imaging, Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of RadiologyUniversity of Alabama School of MedicineBirminghamUSA
  3. 3.Department of RadiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of RadiologyKeck School of Medicine of University of Southern CaliforniaLos AngelesUSA

Personalised recommendations