Abdominal Radiology

, Volume 43, Issue 2, pp 404–414 | Cite as

Genetics of pancreatic cancer and implications for therapy

  • Priya Bhosale
  • Veronica Cox
  • Silvana Faria
  • Sanaz Javadi
  • Chitra Viswanathan
  • Eugene Koay
  • Eric Tamm
Invited article


Pancreatic cancer is a highly lethal disease with a dismal 5-year prognosis. Knowledge of its genetics may help in identifying new methods for patient screening, and cancer treatment. In this review, we will describe the most common mutations responsible for the genesis of pancreatic cancer and their impact on screening, patterns of disease progression, and therapy.


Pancreatic cancer Genomics Imaging Mutations 



The University of Texas is supported in part by the National Institutes of Health through the Cancer Center Support Grant, P30CA016672.

Compliance with ethical standards

Conflict of interest

Priya Bhosale, MD, Veronica Cox, MD, Silvana Faria, MD PhD, Sanaz Javadi, MD, Chitra Viswanathan, MD, Eugene Koay, MD, Eric Tamm, MD, have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any authors. IRB was waived as it is a review article.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67:7–30CrossRefPubMedGoogle Scholar
  2. 2.
    Costello E, Greenhalf W, Neoptolemos JP (2012) New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 9:435–444CrossRefPubMedGoogle Scholar
  3. 3.
    Regine WF, John WJ, Mohiuddin M (1998) Adjuvant therapy for pancreatic cancer: current status. Front Biosci 3:E186–E192CrossRefPubMedGoogle Scholar
  4. 4.
    Regine WF, Winter KA, Abrams R, et al. (2011) Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann Surg Oncol 18:1319–1326CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oettle H, Post S, Neuhaus P, et al. (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297:267–277CrossRefPubMedGoogle Scholar
  6. 6.
    Hilbig A, Oettle H (2010) Adjuvant therapy of pancreatic cancer. Expert Rev Anticancer Ther 10:485–491CrossRefPubMedGoogle Scholar
  7. 7.
    Conroy T, Desseigne F, Ychou M, et al. (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825CrossRefPubMedGoogle Scholar
  8. 8.
    Werner J, Combs SE, Springfeld C, et al. (2013) Advanced-stage pancreatic cancer: therapy options. Nat Rev Clin Oncol 10:323–333CrossRefPubMedGoogle Scholar
  9. 9.
    Simoes PK, Olson SH, Saldia A, Kurtz RC (2017) Epidemiology of pancreatic adenocarcinoma. Chin Clin Oncol 6:24CrossRefPubMedGoogle Scholar
  10. 10.
    Wang J, Yang DL, Chen ZZ, Gou BF (2016) Associations of body mass index with cancer incidence among populations, genders, and menopausal status: a systematic review and meta-analysis. Cancer Epidemiol 42:1–8CrossRefPubMedGoogle Scholar
  11. 11.
    Brand RE, Lerch MM, Rubinstein WS, et al. (2007) Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 56:1460–1469CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Permuth-Wey J, Egan KM (2009) Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer 8:109–117CrossRefPubMedGoogle Scholar
  13. 13.
    Lindor NM, Greene MH (1998) The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J Natl Cancer Inst 90:1039–1071CrossRefPubMedGoogle Scholar
  14. 14.
    Beger C, Ramadani M, Meyer S, et al. (2004) Down-regulation of BRCA1 in chronic pancreatitis and sporadic pancreatic adenocarcinoma. Clin Cancer Res 10:3780–3787CrossRefPubMedGoogle Scholar
  15. 15.
    Luo G, Lu Y, Jin K, et al. (2015) Pancreatic cancer: BRCA mutation and personalized treatment. Expert Rev Anticancer Ther 15:1223–1231CrossRefPubMedGoogle Scholar
  16. 16.
    Wooster R, Bignell G, Lancaster J, et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792CrossRefPubMedGoogle Scholar
  17. 17.
    Sharan SK, Morimatsu M, Albrecht U, et al. (1997) Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386:804–810CrossRefPubMedGoogle Scholar
  18. 18.
    Goggins M, Hruban RH, Kern SE (2000) BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 156:1767–1771CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Peto J, Collins N, Barfoot R, et al. (1999) Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst 91:943–949CrossRefPubMedGoogle Scholar
  20. 20.
    Rahman N, Seal S, Thompson D, et al. (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167CrossRefPubMedGoogle Scholar
  21. 21.
    Casadei S, Norquist BM, Walsh T, et al. (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71:2222–2229CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kanda M, Matthaei H, Wu J, et al. (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(730–733):e739Google Scholar
  23. 23.
    McWilliams RR, Wieben ED, Rabe KG, et al. (2011) Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet 19:472–478CrossRefPubMedGoogle Scholar
  24. 24.
    Barrow E, Robinson L, Alduaij W, et al. (2009) Cumulative lifetime incidence of extracolonic cancers in Lynch syndrome: a report of 121 families with proven mutations. Clin Genet 75:141–149CrossRefPubMedGoogle Scholar
  25. 25.
    Wilentz RE, Goggins M, Redston M, et al. (2000) Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity. Am J Pathol 156:1641–1651CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kastrinos F, Mukherjee B, Tayob N, et al. (2009) Risk of pancreatic cancer in families with Lynch syndrome. JAMA 302:1790–1795CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Geary J, Sasieni P, Houlston R, et al. (2008) Gene-related cancer spectrum in families with hereditary non-polyposis colorectal cancer (HNPCC). Fam Cancer 7:163–172CrossRefPubMedGoogle Scholar
  28. 28.
    Howes N, Lerch MM, Greenhalf W, et al. (2004) Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2:252–261CrossRefPubMedGoogle Scholar
  29. 29.
    Rebours V, Boutron-Ruault MC, Schnee M, et al. (2009) The natural history of hereditary pancreatitis: a national series. Gut 58:97–103CrossRefPubMedGoogle Scholar
  30. 30.
    Rebours V, Boutron-Ruault MC, Jooste V, et al. (2009) Mortality rate and risk factors in patients with hereditary pancreatitis: uni- and multidimensional analyses. Am J Gastroenterol 104:2312–2317CrossRefPubMedGoogle Scholar
  31. 31.
    Whitcomb DC, Gorry MC, Preston RA, et al. (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145CrossRefPubMedGoogle Scholar
  32. 32.
    Whitcomb DC, Preston RA, Aston CE, et al. (1996) A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology 110:1975–1980CrossRefPubMedGoogle Scholar
  33. 33.
    Whitcomb DC (2010) Genetic aspects of pancreatitis. Annu Rev Med 61:413–424CrossRefPubMedGoogle Scholar
  34. 34.
    Rhim AD, Mirek ET, Aiello NM, et al. (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Giardiello FM, Brensinger JD, Tersmette AC, et al. (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119:1447–1453CrossRefPubMedGoogle Scholar
  36. 36.
    Su GH, Hruban RH, Bansal RK, et al. (1999) Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol 154:1835–1840CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Austin MA, Kuo E, Van Den Eeden SK, et al. (2013) Family history of diabetes and pancreatic cancer as risk factors for pancreatic cancer: the PACIFIC study. Cancer Epidemiol Biomark Prev 22:1913–1917CrossRefGoogle Scholar
  38. 38.
    Canto MI, Harinck F, Hruban RH, et al. (2013) International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 62:339–347CrossRefPubMedGoogle Scholar
  39. 39.
    Canto MI, Hruban RH, Fishman EK, et al. (2012) Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 142:796–804 (quiz e714–795)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McAllister F, Montiel MF, Uberoi GS, et al. (2017) Current status and future directions for screening patients at high risk for pancreatic cancer. Gastroenterol Hepatol (N Y) 13:268–275Google Scholar
  41. 41.
    Cho SG, Lee DH, Lee KY, et al. (2005) Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr 29:163–169CrossRefPubMedGoogle Scholar
  42. 42.
    Ma C, Li Y, Wang L, et al. (2017) Intravoxel incoherent motion DWI of the pancreatic adenocarcinomas: monoexponential and biexponential apparent diffusion parameters and histopathological correlations. Cancer Imaging 17:12CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kang KM, Lee JM, Yoon JH, et al. (2014) Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 270:444–453CrossRefPubMedGoogle Scholar
  44. 44.
    Brat DJ, Lillemoe KD, Yeo CJ, Warfield PB, Hruban RH (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 22:163–169CrossRefPubMedGoogle Scholar
  45. 45.
    Sausen M, Phallen J, Adleff V, et al. (2015) Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 6:7686CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kaimakliotis P, Riff B, Pourmand K, et al. (2015) Sendai and Fukuoka consensus guidelines identify advanced neoplasia in patients with suspected mucinous cystic neoplasms of the pancreas. Clin Gastroenterol Hepatol 13:1808–1815CrossRefPubMedGoogle Scholar
  47. 47.
    Megibow AJ, Baker ME, Morgan DE, et al. (2017) Management of incidental pancreatic cysts: a white paper of the ACR incidental findings committee. J Am Coll Radiol 14:911–923CrossRefPubMedGoogle Scholar
  48. 48.
    Scheiman JM (2017) Pancreatic Cysts—Part 1: using the American Gastroenterological Association guidelines for the management of pancreatic cysts—a practical approach. Pancreas 46:742–744CrossRefPubMedGoogle Scholar
  49. 49.
    Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A (2008) Pancreatic carcinogenesis. Pancreatology 8:110–125CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Koorstra JB, Feldmann G, Habbe N, Maitra A (2008) Morphogenesis of pancreatic cancer: role of pancreatic intraepithelial neoplasia (PanINs). Langenbecks Arch Surg 393:561–570CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fotopoulos G, Syrigos K, Saif MW (2016) Genetic factors affecting patient responses to pancreatic cancer treatment. Ann Gastroenterol 29:466–476PubMedPubMedCentralGoogle Scholar
  52. 52.
    Caldas C, Kern SE (1995) K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol 18:1–6PubMedGoogle Scholar
  53. 53.
    Jimeno A, Hidalgo M (2006) Molecular biomarkers: their increasing role in the diagnosis, characterization, and therapy guidance in pancreatic cancer. Mol Cancer Ther 5:787–796CrossRefPubMedGoogle Scholar
  54. 54.
    Yachida S, Jones S, Bozic I, et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hayashi H, Kohno T, Ueno H, et al. (2017) Utility of assessing the number of mutated KRAS, CDKN2A, TP53, and SMAD4 genes using a targeted deep sequencing assay as a prognostic biomarker for pancreatic cancer. Pancreas 46:335–340CrossRefPubMedGoogle Scholar
  56. 56.
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700CrossRefPubMedGoogle Scholar
  57. 57.
    Hahn SA, Schutte M, Hoque AT, et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353CrossRefPubMedGoogle Scholar
  58. 58.
    Lecanda J, Ganapathy V, D’Aquino-Ardalan C, et al. (2009) TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle 8:742–756CrossRefPubMedGoogle Scholar
  59. 59.
    Iacobuzio-Donahue CA, Song J, Parmiagiani G, et al. (2004) Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors. Clin Cancer Res 10:1597–1604CrossRefPubMedGoogle Scholar
  60. 60.
    Blackford A, Serrano OK, Wolfgang CL, et al. (2009) SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res 15:4674–4679CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Iacobuzio-Donahue CA, Fu B, Yachida S, et al. (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 27:1806–1813CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Boone BA, Sabbaghian S, Zenati M, et al. (2014) Loss of SMAD4 staining in pre-operative cell blocks is associated with distant metastases following pancreaticoduodenectomy with venous resection for pancreatic cancer. J Surg Oncol 110:171–175CrossRefPubMedGoogle Scholar
  63. 63.
    Crane CH, Varadhachary GR, Yordy JS, et al. (2011) Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol 29:3037–3043CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sarkar FH, Adsule S, Li Y, Padhye S (2007) Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 7:599–608CrossRefPubMedGoogle Scholar
  65. 65.
    Sclabas GM, Uwagawa T, Schmidt C, et al. (2005) Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 103:2485–2490CrossRefPubMedGoogle Scholar
  66. 66.
    Maitra A, Ashfaq R, Gunn CR, et al. (2002) Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 118:194–201CrossRefPubMedGoogle Scholar
  67. 67.
    Jones S, Zhang X, Parsons DW, et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Biankin AV, Waddell N, Kassahn KS, et al. (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Waddell N, Pajic M, Patch AM, et al. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Witkiewicz AK, McMillan EA, Balaji U, et al. (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L (2016) Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur J Cancer 54:75–83CrossRefPubMedGoogle Scholar
  72. 72.
    Heestand GM, Kurzrock R (2015) Molecular landscape of pancreatic cancer: implications for current clinical trials. Oncotarget 6:4553–4561CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bodoky G, Timcheva C, Spigel DR, et al. (2012) A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investig New Drugs 30:1216–1223CrossRefGoogle Scholar
  74. 74.
    Lowry KP, Lee JM, Kong CY, et al. (2012) Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis. Cancer 118:2021–2030CrossRefPubMedGoogle Scholar
  75. 75.
    Sahin IH, Lowery MA, Stadler ZK, et al. (2016) Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches. Expert Rev Gastroenterol Hepatol 10:893–905PubMedPubMedCentralGoogle Scholar
  76. 76.
    Golan T, Sella T, O’Reilly EM, et al. (2017) Overall survival and clinical characteristics of BRCA mutation carriers with stage I/II pancreatic cancer. Br J Cancer 116:697–702CrossRefPubMedGoogle Scholar
  77. 77.
    Golan T, Kanji ZS, Epelbaum R, et al. (2014) Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer 111:1132–1138CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Poplin E, Wasan H, Rolfe L, et al. (2013) Randomized, multicenter, phase II study of CO-101 versus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma: including a prospective evaluation of the role of hENT1 in gemcitabine or CO-101 sensitivity. J Clin Oncol 31:4453–4461CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Priya Bhosale
    • 1
  • Veronica Cox
    • 1
  • Silvana Faria
    • 1
  • Sanaz Javadi
    • 1
  • Chitra Viswanathan
    • 1
  • Eugene Koay
    • 2
  • Eric Tamm
    • 1
  1. 1.Department of Diagnostic Radiology, Unit 38The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations