Skip to main content

Advertisement

Log in

Pancreatic adenocarcinoma: cross-sectional imaging techniques

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Pancreatic adenocarcinoma is a common malignancy that has a poor prognosis. Imaging is vital in its detection, staging, and management. Although a variety of imaging techniques are available, MDCT is the preferred imaging modality for staging and assessing the resectability of pancreatic adenocarcinoma. MR also has an important adjunct role, and may be used in addition to CT or as a problem-solving tool. A dedicated pancreatic protocol should be acquired as a biphasic technique optimized for the detection of pancreatic adenocarcinoma and to allow accurate local and distant disease staging. Emerging techniques like dual-energy CT and texture analysis of CT and MR images have a great potential in improving lesion detection, characterization, and treatment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  2. Tamm EP, Balachandran A, Bhosale PR, et al. (2012) Imaging of pancreatic adenocarcinoma: update on staging/resectability. Radiol Clin North Am 50(3):407–428

    Article  PubMed  Google Scholar 

  3. Tummala P, Junaidi O, Agarwal B (2011) Imaging of pancreatic cancer: an overview. J Gastrointest Oncol 2(3):168–174

    PubMed  PubMed Central  Google Scholar 

  4. Lall CG, Howard TJ, Skandarajah A, et al. (2007) New concepts in staging and treatment of locally advanced pancreatic head cancer. AJR Am J Roentgenol 189(5):1044–1050

    Article  PubMed  Google Scholar 

  5. Wong JC, Lu DS (2008) Staging of pancreatic adenocarcinoma by imaging studies. Clin Gastroenterol Hepatol 6(12):1301–1308

    Article  PubMed  Google Scholar 

  6. Kinney T (2010) Evidence-based imaging of pancreatic malignancies. Surg Clin North Am 90(2):235–249

    Article  PubMed  Google Scholar 

  7. Callery MP, Chang KJ, Fishman EK, et al. (2009) Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol 16(7):1727–1733

    Article  PubMed  Google Scholar 

  8. Long EE, Van Dam J, Weinstein S, et al. (2005) Computed tomography, endoscopic, laparoscopic, and intra-operative sonography for assessing resectability of pancreatic cancer. Surg Oncol 14(2):105–113

    Article  PubMed  Google Scholar 

  9. Faria SC, Tamm EP, Loyer EM, et al. (2004) Diagnosis and staging of pancreatic tumors. Semin Roentgenol 39(3):397–411

    Article  PubMed  Google Scholar 

  10. Allema JH, Reinders ME, van Gulik TM, et al. (1995) Prognostic factors for survival after pancreaticoduodenectomy for patients with carcinoma of the pancreatic head region. Cancer 75(8):2069–2076

    Article  CAS  PubMed  Google Scholar 

  11. Allema JH, Reinders ME, van Gulik TM, et al. (1995) Results of pancreaticoduodenectomy for ampullary carcinoma and analysis of prognostic factors for survival. Surgery 117(3):247–253

    Article  CAS  PubMed  Google Scholar 

  12. Al-Hawary MM, Francis IR, Chari ST, et al. (2014) Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the american pancreatic association. Gastroenterology 146(1):291–304

    Article  PubMed  Google Scholar 

  13. Al-Hawary MM, Francis IR, Chari ST, et al. (2014) Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 270(1):248–260

    Article  PubMed  Google Scholar 

  14. Fleischmann D, Kamaya A (2009) Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin North Am 47(1):13–26

    Article  PubMed  Google Scholar 

  15. Schueller G, Schima W, Schueller-Weidekamm C, et al. (2006) Multidetector CT of pancreas: effects of contrast material flow rate and individualized scan delay on enhancement of pancreas and tumor contrast. Radiology 241(2):441–448

    Article  PubMed  Google Scholar 

  16. NCCN clinical practice guidelines in oncology for pancreatic adenocarcinoma. Version 2.2017. 2017; Available from: https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#pancreatic

  17. Perez-Johnston R, Lenhart DK, Sahani DV (2010) CT angiography of the hepatic and pancreatic circulation. Radiol Clin North Am 48(2):311–330

    Article  PubMed  Google Scholar 

  18. Brennan DD, Zamboni GA, Raptopoulos VD, Kruskal JB (2007) Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics 27(6):1653–1666

    Article  PubMed  Google Scholar 

  19. Fletcher JG, Wiersema MJ, Farrell MA, et al. (2003) Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology 229(1):81–90

    Article  PubMed  Google Scholar 

  20. Ichikawa T, Erturk SM, Sou H, et al. (2006) MDCT of pancreatic adenocarcinoma: optimal imaging phases and multiplanar reformatted imaging. AJR Am J Roentgenol 187(6):1513–1520

    Article  PubMed  Google Scholar 

  21. Brugel M, Link TM, Rummeny EJ, et al. (2004) Assessment of vascular invasion in pancreatic head cancer with multislice spiral CT: value of multiplanar reconstructions. Eur Radiol 14(7):1188–1195

    Article  PubMed  Google Scholar 

  22. Catalano C, Laghi A, Fraioli F, et al. (2003) Pancreatic carcinoma: the role of high-resolution multislice spiral CT in the diagnosis and assessment of resectability. Eur Radiol 13(1):149–156

    PubMed  Google Scholar 

  23. Vargas R, Nino-Murcia M, Trueblood W, Jeffrey RB Jr (2004) MDCT in Pancreatic adenocarcinoma: prediction of vascular invasion and resectability using a multiphasic technique with curved planar reformations. AJR Am J Roentgenol 182(2):419–425

    Article  PubMed  Google Scholar 

  24. Fukushima H, Itoh S, Takada A, et al. (2006) Diagnostic value of curved multiplanar reformatted images in multislice CT for the detection of resectable pancreatic ductal adenocarcinoma. Eur Radiol 16(8):1709–1718

    Article  PubMed  Google Scholar 

  25. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kulkarni NM, Pinho DF, Kambadakone AR, Sahani DV (2013) Emerging technologies in CT- radiation dose reduction and dual-energy CT. Semin Roentgenol 48(3):192–202

    Article  PubMed  Google Scholar 

  27. Agrawal MD, Pinho DF, Kulkarni NM, et al. (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34(3):589–612

    Article  PubMed  Google Scholar 

  28. Morgan DE (2014) Dual-energy CT of the abdomen. Abdom Imaging 39(1):108–134

    Article  PubMed  Google Scholar 

  29. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342

    Article  PubMed  Google Scholar 

  30. Jung DC, Oh YT, Kim MD, Park M (2012) Usefulness of the virtual monochromatic image in dual-energy spectral CT for decreasing renal cyst pseudoenhancement: a phantom study. AJR Am J Roentgenol 199(6):1316–1319

    Article  PubMed  Google Scholar 

  31. Matsumoto K, Jinzaki M, Tanami Y, et al. (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262

    Article  PubMed  Google Scholar 

  32. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199(5 Suppl):S9–S15

    Article  PubMed  Google Scholar 

  33. Patino M, Prochowski A, Agrawal MD, et al. (2016) Material separation using dual-energy CT: current and emerging applications. Radiographics 36(4):1087–1105

    Article  PubMed  Google Scholar 

  34. Mileto A, Mazziotti S, Gaeta M, et al. (2012) Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol 67(4):334–339

    Article  PubMed  Google Scholar 

  35. Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV (2013) Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol 23(2):351–359

    Article  PubMed  Google Scholar 

  36. Takrouri HS, Alnassar MM, Amirabadi A, et al. (2015) Metal artifact reduction: added value of rapid-kilovoltage-switching dual-energy CT in relation to single-energy CT in a piglet animal model. AJR Am J Roentgenol 205(3):W352–W359

    Article  PubMed  Google Scholar 

  37. Pessis E, Sverzut JM, Campagna R, et al. (2015) Reduction of metal artifact with dual-energy CT: virtual monospectral imaging with fast kilovoltage switching and metal artifact reduction software. Semin Musculoskelet Radiol 19(5):446–455

    Article  PubMed  Google Scholar 

  38. Pessis E, Campagna R, Sverzut JM, et al. (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583

    Article  PubMed  Google Scholar 

  39. Macari M, Spieler B, Kim D, et al. (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol 194(1):W27–W32

    Article  PubMed  Google Scholar 

  40. Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE (2013) Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol 68(2):148–154

    Article  CAS  PubMed  Google Scholar 

  41. McNamara MM, Little MD, Alexander LF, et al. (2015) Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT. Abdom Imaging 40(5):1230–1240

    Article  PubMed  Google Scholar 

  42. Hardie AD, Picard MM, Camp ER, et al. (2015) Application of an advanced image-based virtual monoenergetic reconstruction of dual source dual-energy CT data at low keV increases image quality for routine pancreas imaging. J Comput Assist Tomogr 39(5):716–720

    Article  PubMed  Google Scholar 

  43. Frellesen C, Fessler F, Hardie AD, et al. (2015) Dual-energy CT of the pancreas: improved carcinoma-to-pancreas contrast with a noise-optimized monoenergetic reconstruction algorithm. Eur J Radiol 84(11):2052–2058

    Article  PubMed  Google Scholar 

  44. Brook OR, Gourtsoyianni S, Brook A, et al. (2013) Split-bolus spectral multidetector CT of the pancreas: assessment of radiation dose and tumor conspicuity. Radiology 269(1):139–148

    Article  PubMed  Google Scholar 

  45. Chu AJ, Lee JM, Lee YJ, et al. (1018) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol 2012(85):e891–e898

    Google Scholar 

  46. Lee YH, Park KK, Song HT, Kim S, Suh JS (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340

    Article  PubMed  Google Scholar 

  47. Boos J, Fang J, Heidinger BH, Raptopoulos V, Brook OR (2017) Dual energy CT angiography: pros and cons of dual-energy metal artifact reduction algorithm in patients after endovascular aortic repair. Abdom Radiol 42(3):749–758

    Article  Google Scholar 

  48. Quiney B, Harris A, McLaughlin P, Nicolaou S (2015) Dual-energy CT increases reader confidence in the detection and diagnosis of hypoattenuating pancreatic lesions. Abdom Imaging 40(4):859–864

    Article  PubMed  Google Scholar 

  49. Chen FM, Ni JM, Zhang ZY, et al. (2016) Presurgical evaluation of pancreatic cancer: a comprehensive imaging comparison of CT versus MRI. AJR Am J Roentgenol 206(3):526–535

    Article  PubMed  Google Scholar 

  50. Park HS, Lee JM, Choi HK, et al. (2009) Preoperative evaluation of pancreatic cancer: comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J Magn Reson Imaging 30(3):586–595

    Article  PubMed  Google Scholar 

  51. O’Neill E, Hammond N, Miller FH (2014) MR imaging of the pancreas. Radiol Clin North Am 52(4):757–777

    Article  PubMed  Google Scholar 

  52. Keppke AL, Miller FH (2005) Magnetic resonance imaging of the pancreas: the future is now. Semin Ultrasound CT MR 26(3):132–152

    Article  PubMed  Google Scholar 

  53. Jeffrey RB (2012) Pancreatic cancer: radiologic imaging. Gastroenterol Clin N Am 41(1):159–177

    Article  Google Scholar 

  54. Tirkes T, Menias CO, Sandrasegaran K (2012) MR imaging techniques for pancreas. Radiol Clin N Am 50(3):379–393

    Article  PubMed  Google Scholar 

  55. Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 62(8):761–768

    Article  CAS  PubMed  Google Scholar 

  56. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143

    Article  PubMed  PubMed Central  Google Scholar 

  57. Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology 250(2):444–452

    Article  PubMed  Google Scholar 

  58. Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59(12):1061–1069

    Article  CAS  PubMed  Google Scholar 

  59. Brown RA, Frayne R (2008) A comparison of texture quantification techniques based on the Fourier and S transforms. Med Phys 35(11):4998–5008

    Article  PubMed  Google Scholar 

  60. Han F, Wang H, Zhang G, et al. (2015) Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 28(1):99–115

    Article  PubMed  Google Scholar 

  61. Chae HD, Park CM, Park SJ, et al. (2014) Computerized texture analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive lesions from invasive pulmonary adenocarcinomas. Radiology 273(1):285–293

    Article  PubMed  Google Scholar 

  62. Al-Kadi OS, Watson D (2008) Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55(7):1822–1830

    Article  PubMed  Google Scholar 

  63. Raman SP, Schroeder JL, Huang P, et al. (2015) Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements—a work in progress. J Comput Assist Tomogr 39(3):383–395

    PubMed  Google Scholar 

  64. Huang YL, Chen JH, Shen WC (2006) Diagnosis of hepatic tumors with texture analysis in nonenhanced computed tomography images. Acad Radiol 13(6):713–720

    Article  PubMed  Google Scholar 

  65. Raman SP, Chen Y, Schroeder JL, Huang P, Fishman EK (2014) CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol 21(12):1587–1596

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67(2):157–164

    Article  CAS  PubMed  Google Scholar 

  67. Eliat PA, Olivie D, Saikali S, et al. (2012) Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int 2012:195176

    Article  PubMed  Google Scholar 

  68. O’Connor JP, Rose CJ, Jackson A, et al. (2011) DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 105(1):139–145

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hatt M, Tixier F, Pierce L, et al. (2017) Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 44(1):151–165

    Article  PubMed  Google Scholar 

  70. Hatt M, Majdoub M, Vallieres M, et al. (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56(1):38–44

    Article  CAS  PubMed  Google Scholar 

  71. Eilaghi A, Baig S, Zhang Y, et al. (2017) CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med Imaging 17(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cassinotto C, Chong J, Zogopoulos G, et al. (2017) Resectable pancreatic adenocarcinoma: role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur J Radiol 90:152–158

    Article  PubMed  Google Scholar 

  73. Hanania AN, Bantis LE, Feng Z, et al. (2016) Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget 7(52):85776–85784

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen M. Kulkarni.

Ethics declarations

Conflicts of interest

None.

Research involving human participants and/or animals

None.

Informed consent

Not applicable since this is a review manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, N.M., Hough, D.M., Tolat, P.P. et al. Pancreatic adenocarcinoma: cross-sectional imaging techniques. Abdom Radiol 43, 253–263 (2018). https://doi.org/10.1007/s00261-017-1380-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1380-4

Keywords

Navigation