Skip to main content
Log in

Measurement and scan reproducibility of parameters of intravoxel incoherent motion in renal tumor and normal renal parenchyma: a preliminary research at 3.0 T MR

  • Published:
Abdominal Radiology Aims and scope Submit manuscript



To prospectively estimate measurement and scan reproducibility of parameters of intravoxel incoherent motion (IVIM) in renal tumors, normal renal cortex, and medulla.


Twenty-four consecutive patients (twelve males and twelve females; median age 56.7 years, range 32–71 years) with 25 renal tumors (20 renal cell carcinomas, one urothelium carcinoma, three angiomyolipomas, and one oncocytoma) were examined twice using IVIM1 and IVIM2 with 9 and 16 b values, respectively, at 3.0 T. All the patients were re-scanned in 24–48 h. Regions of interest (ROIs) were placed in solid part of tumor, normal cortex, and medulla to derive IVIM parameters D (true diffusion coefficient), D* (pseudodiffusion coefficient), and f (perfusion fraction of pseudodiffusion). Differences in parameters between two IVIM sets and intra-observer, inter-observer, and scan–rescan differences were assessed using paired t tests. Intra-observer, inter-observer, and scan–rescan reproducibility were assessed by measuring coefficient of variation and Bland–Altman limits of agreements.


Intra-observer reproducibility of renal tumors, normal renal cortex, and medulla was excellent for apparent diffusion coefficient (ADC; CV: 3.45%–5.34%, BA-LA: −14% to 18%) and D (CV: 3.65% to 6.04%, BA-LA: −18% to 19%), good for f (CV: 11.96%–16.08%, BA-LA: −76.4% to 92.1% except f of medulla with CV of 32.59% and BA-LA of −76.4% to 92.1% in IVIM1), and poor for D* (CV: 25.0% to 75.4%, BA-LA: −111% to 150%). The same order was in inter-observer reproducibility analysis. Scan–rescan reproducibility was the worst of the three parameters. Renal medulla showed worse reproducibility than renal tumors and the normal cortex. The metrics of IVIM2 had better reproducibility than IVIM1.


Excellent reproducibility evaluation for ADC and D, good for f, and poor for D* derived from IVIM was performed in renal tumors, normal renal cortex, and medulla. D* has limited reliability and scan–rescan reproducibility should be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Yu X, Lin M, Ouyang H, Zhou C, Zhang H (2012) Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI. Eur J Radiol 81(11):3061–3066. doi:10.1016/j.ejrad.2012.04.028

    Article  PubMed  Google Scholar 

  2. Wang H, Cheng L, Zhang X, et al. (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257(1):135–143. doi:10.1148/radiol.10092396

    Article  PubMed  Google Scholar 

  3. Padhani AR, Liu G, Koh DM, et al. (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210(3):617–623. doi:10.1148/radiology.210.3.r99fe17617

    Article  PubMed  CAS  Google Scholar 

  5. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196(6):1351–1361. doi:10.2214/AJR.10.5515

    Article  PubMed  Google Scholar 

  6. Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505. doi:10.1148/radiology.168.2.3393671

    Article  PubMed  Google Scholar 

  7. Le Bihan D, Breton E, Lallemand D, et al. (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407. doi:10.1148/radiology.161.2.3763909

    Article  PubMed  Google Scholar 

  8. Turner R, Le Bihan D, Maier J, et al. (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414. doi:10.1148/radiology.177.2.2217777

    Article  PubMed  CAS  Google Scholar 

  9. Klauss M, Lemke A, Grunberg K, et al. (2011) Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Investig Radiol 46(1):57–63. doi:10.1097/RLI.0b013e3181fb3bf2

    Article  Google Scholar 

  10. Lemke A, Laun FB, Klauss M, et al. (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Investig Radiol 44(12):769–775. doi:10.1097/RLI.0b013e3181b62271

    Article  Google Scholar 

  11. Luciani A, Vignaud A, Cavet M, et al. (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249(3):891–899. doi:10.1148/radiol.2493080080

    Article  PubMed  Google Scholar 

  12. Zhang YD, Wang Q, Wu CJ, et al. (2015) The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the Gleason grade of prostate cancer. Eur Radiol 25(4):994–1004. doi:10.1007/s00330-014-3511-4

    Article  PubMed  Google Scholar 

  13. Bisdas S, Koh TS, Roder C, et al. (2013) Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology 55(10):1189–1196. doi:10.1007/s00234-013-1229-7

    Article  PubMed  Google Scholar 

  14. Federau C, Meuli R, O’Brien K, Maeder P, Hagmann P (2014) Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiol 35(2):256–262. doi:10.3174/ajnr.A3686

    Article  PubMed  CAS  Google Scholar 

  15. Lai V, Li X, Lee VH, et al. (2013) Intravoxel incoherent motion MR imaging: comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis. Eur Radiol 23(10):2793–2801. doi:10.1007/s00330-013-2889-8

    Article  PubMed  Google Scholar 

  16. Shinmoto H, Tamura C, Soga S, et al. (2012) An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 199(4):W496–500. doi:10.2214/AJR.11.8347

    Article  PubMed  Google Scholar 

  17. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol 46(5):285–291. doi:10.1097/RLI.0b013e3181ffc485

    Article  Google Scholar 

  18. Ebrahimi B, Rihal N, Woollard JR, et al. (2014) Assessment of renal artery stenosis using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging analysis. Investig Radiol 49(10):640–646. doi:10.1097/RLI.0000000000000066

    Article  Google Scholar 

  19. Ichikawa S, Motosugi U, Ichikawa T, et al. (2013) Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction. Magn Reson Imaging 31(3):414–417. doi:10.1016/j.mri.2012.08.004

    Article  PubMed  Google Scholar 

  20. Rheinheimer S, Stieltjes B, Schneider F, et al. (2012) Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters—initial experience. Eur J Radiol 81(3):e310–316. doi:10.1016/j.ejrad.2011.10.016

    Article  PubMed  CAS  Google Scholar 

  21. Andreou A, Koh DM, Collins DJ, et al. (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23(2):428–434. doi:10.1007/s00330-012-2604-1

    Article  PubMed  CAS  Google Scholar 

  22. Kakite S, Dyvorne H, Besa C, et al. (2015) Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 T. J Magn Reson Imaging 41(1):149–156. doi:10.1002/jmri.24538

    Article  PubMed  Google Scholar 

  23. Wu WC, Chen YF, Tseng HM, Yang SC, My PC (2015) Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol 25(8):2485–2492. doi:10.1007/s00330-015-3655-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sigmund EE, Vivier PH, Sui D, et al. (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263(3):758–769. doi:10.1148/radiol.12111327

    Article  PubMed  Google Scholar 

  25. Cohen AD, Schieke MC, Hohenwalter MD, Schmainda KM (2015) The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 73(1):306–311. doi:10.1002/mrm.25109

    Article  PubMed  Google Scholar 

  26. Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29(6):766–776. doi:10.1016/j.mri.2011.03.004

    Article  PubMed  Google Scholar 

  27. Pang Y, Turkbey B, Bernardo M, et al. (2013) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 69(2):553–562. doi:10.1002/mrm.24277

    Article  PubMed  Google Scholar 

  28. Stieb S, Boss A, Wurnig MC, et al. (2016) Non-parametric intravoxel incoherent motion analysis in patients with intracranial lesions: test-retest reliability and correlation with arterial spin labeling. Neuroimage Clin 11:780–788. doi:10.1016/j.nicl.2016.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  29. Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76(3):337–347. doi:10.1016/j.ejrad.2010.05.033

    Article  PubMed  Google Scholar 

  30. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235(3):911–917. doi:10.1148/radiol.2353040554

    Article  PubMed  Google Scholar 

  31. Notohamiprodjo M, Glaser C, Herrmann KA, et al. (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Investig Radiol 43(10):677–685. doi:10.1097/RLI.0b013e31817d14e6

    Article  Google Scholar 

  32. Wurnig MC, Donati OF, Ulbrich E, et al. (2015) Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 74(5):1414–1422. doi:10.1002/mrm.25506

    Article  PubMed  Google Scholar 

  33. Priola AM, Priola SM, Gned D, et al. (2017) Diffusion-weighted quantitative MRI of pleural abnormalities: intra- and interobserver variability in the apparent diffusion coefficient measurements. J Magn Reson Imaging 46(3):769–782. doi:10.1002/jmri.25633

    Article  PubMed  Google Scholar 

Download references


We thank Xu Zhang (Department of Urology) and Aitao Guo (Department of Pathology) from General Hospital of PLA for their thoughtful suggestions and technical support.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Haiyi Wang or Huiyi Ye.

Ethics declarations


This study was funded by the National Natural Science Foundation of China (Grant Number 81471641). The funders had no role in research design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Zhang, H., Man, F. et al. Measurement and scan reproducibility of parameters of intravoxel incoherent motion in renal tumor and normal renal parenchyma: a preliminary research at 3.0 T MR. Abdom Radiol 43, 1739–1748 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI: