Advertisement

Abdominal Radiology

, Volume 43, Issue 4, pp 948–959 | Cite as

Applications of contrast-enhanced ultrasound in the pediatric abdomen

  • Aikaterini Ntoulia
  • Sudha A. Anupindi
  • Kassa Darge
  • Susan J. Back
Article
  • 354 Downloads

Abstract

Contrast-enhanced ultrasound (CEUS) is a radiation-free, safe, and in specific clinical settings, highly sensitive imaging modality. Over the recent decades, there is cumulating experience and a large volume of published safety and efficacy data on pediatric CEUS applications. Many of these applications have been directly translated from adults, while others are unique to the pediatric population. The most frequently reported intravenous abdominal applications of CEUS in children are the characterization of focal liver lesions, monitoring of solid abdominal tumor response to treatment, and the evaluation of intra-abdominal parenchymal injuries in selected cases of blunt abdominal trauma. The intravesical CEUS application, namely contrast-enhanced voiding urosonography (ceVUS), is a well-established, pediatric-specific imaging technique entailing the intravesical administration of ultrasound contrast agents for detection and grading of vesicoureteral reflux. In Europe, all pediatric CEUS applications remain off-label. In 2016, the United States Food and Drug Administration (FDA) approved the most commonly used worldwide second-generation ultrasound contrast SonoVue®/Lumason® for pediatric liver and intravesical applications, giving new impetus to pediatric CEUS worldwide.

Keywords

Contrast-enhanced ultrasound CEUS Children Pediatric population Intravenous Intravesical Intracavitary Applications IV CEUS ceVUS Safety 

Notes

Compliance with ethical standards

Funding

No external funding was secured for this study.

Conflict of interest

All authors have no conflict of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Sidhu PS, Cantisani V, Deganello A, et al. (2017) Role of contrast-enhanced ultrasound (CEUS) in paediatric practice: an EFSUMB position statement. Ultraschall Med 38:33–43PubMedGoogle Scholar
  2. 2.
    Rafailidis V, Deganello A, Watson T, et al. (2017) Enhancing the role of paediatric ultrasound with microbubbles: a review of intravenous applications. Br J Radiol 90:20160556CrossRefPubMedGoogle Scholar
  3. 3.
    Sellars ME, Deganello A, Sidhu PS (2014) Paediatric contrast-enhanced ultrasound (CEUS): a technique that requires co-operation for rapid implementation into clinical practice. Ultraschall Med 35:203–206CrossRefPubMedGoogle Scholar
  4. 4.
    Darge K, Papadopoulou F, Ntoulia A, et al. (2013) Safety of contrast-enhanced ultrasound in children for non-cardiac applications: a review by the Society for Pediatric Radiology (SPR) and the International Contrast Ultrasound Society (ICUS). Pediatr Radiol 43:1063–1073CrossRefPubMedGoogle Scholar
  5. 5.
    McCarville MB (2011) Contrast-enhanced sonography in pediatrics. Pediatr Radiol 41(Suppl 1):S238–S242CrossRefPubMedGoogle Scholar
  6. 6.
    Piskunowicz M, Kosiak W, Batko T, et al. (2015) Safety of intravenous application of second-generation ultrasound contrast agent in children: prospective analysis. Ultrasound Med Biol 41:1095–1099CrossRefPubMedGoogle Scholar
  7. 7.
    Rosado E, Riccabona M (2016) Off-label use of ultrasound contrast agents for intravenous applications in children: analysis of the existing literature. J Ultrasound Med 35(3):487–496CrossRefPubMedGoogle Scholar
  8. 8.
    Torres A, Koskinen SK, Gjertsen H, et al (2017) Contrast-enhanced ultrasound using sulfur hexafluoride is safe in the pediatric setting. Acta Radiol: 284185117690423Google Scholar
  9. 9.
    Yusuf GT, Sellars ME, Deganello A, et al. (2017) Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol 208:446–452CrossRefPubMedGoogle Scholar
  10. 10.
    Knieling F, Strobel D, Rompel O, et al. (2016) Spectrum, applicability and diagnostic capacity of contrast-enhanced ultrasound in pediatric patients and young adults after intravenous application—a retrospective trial. Ultraschall Med 37:619–626CrossRefPubMedGoogle Scholar
  11. 11.
    Riccabona M (2012) Application of a second-generation US contrast agent in infants and children–a European questionnaire-based survey. Pediatr Radiol 42:1471–1480CrossRefPubMedGoogle Scholar
  12. 12.
    Piscaglia F, Nolsoe C, Dietrich CF, et al. (2012) The EFSUMB guidelines and recommendations on the clinical Practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33:33–59CrossRefPubMedGoogle Scholar
  13. 13.
    Riccabona M, Avni FE, Damasio MB, et al. (2012) ESPR uroradiology task force and ESUR paediatric working group-imaging recommendations in paediatric uroradiology, part V: childhood cystic kidney disease, childhood renal transplantation and contrast-enhanced ultrasonography in children. Pediatr Radiol 42:1275–1283CrossRefPubMedGoogle Scholar
  14. 14.
    Riccabona M, Vivier PH, Ntoulia A, et al. (2014) ESPR uroradiology task force imaging recommendations in paediatric uroradiology, part VII: standardised terminology, impact of existing recommendations, and update on contrast-enhanced ultrasound of the paediatric urogenital tract. Pediatr Radiol 44:1478–1484CrossRefPubMedGoogle Scholar
  15. 15.
    Armstrong LB, Mooney DP, Paltiel H, et al. (2017) Contrast enhanced ultrasound for the evaluation of blunt pediatric abdominal trauma. J Pediatr Surg . doi: 10.1016/j.jpedsurg.2017.03.042 Google Scholar
  16. 16.
    McCarville MB, Coleman JL, Guo J, et al. (2016) Use of quantitative dynamic contrast-enhanced ultrasound to assess response to antiangiogenic therapy in children and adolescents with solid malignancies: a pilot study. AJR Am J Roentgenol 206(5):933–939CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Coleman JL, Navid F, Furman WL, et al. (2014) Safety of ultrasound contrast agents in the pediatric oncologic population: a single-institution experience. AJR Am J Roentgenol 202:966–970CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McCarville MB, Kaste SC, Hoffer FA, et al. (2012) Contrast-enhanced sonography of malignant pediatric abdominal and pelvic solid tumors: preliminary safety and feasibility data. Pediatr Radiol 42:824–833CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Colleran GC, Paltiel HJ, Barnewolt CE, et al. (2016) Residual intravesical iodinated contrast: a potential cause of false-negative reflux study at contrast-enhanced voiding urosonography. Pediatr Radiol 46:1614–1617CrossRefPubMedGoogle Scholar
  20. 20.
    Colleran GC, Barnewolt CE, Chow JS, et al. (2016) Intrarenal reflux: diagnosis at contrast-enhanced voiding urosonography. J Ultrasound Med 35:1811–1819CrossRefPubMedGoogle Scholar
  21. 21.
    Laugesen NG, Nolsoe CP, Rosenberg J (2017) Clinical applications of contrast-enhanced ultrasound in the pediatric work-up of focal liver lesions and blunt abdominal trauma: a systematic review. Ultrasound Int Open 3:E2–E7CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kljucevsek D, Vidmar D, Urlep D, et al. (2016) Dynamic contrast-enhanced ultrasound of the bowel wall with quantitative assessment of Crohn’s disease activity in childhood. Radiol Oncol 50:347–354CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bonini G, Pezzotta G, Morzenti C, et al. (2007) Contrast-enhanced ultrasound with SonoVue in the evaluation of postoperative complications in pediatric liver transplant recipients. J Ultrasound 10:99–106CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
  25. 25.
    Stenzel M, Mentzel HJ (2014) Ultrasound elastography and contrast-enhanced ultrasound in infants, children and adolescents. Eur J Radiol 83:1560–1569CrossRefPubMedGoogle Scholar
  26. 26.
    Jacob J, Deganello A, Sellars ME, et al. (2013) Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med 34:529–540CrossRefPubMedGoogle Scholar
  27. 27.
    McMahon CJ, Ayres NA, Bezold LI, et al. (2005) Safety and efficacy of intravenous contrast imaging in pediatric echocardiography. Pediatr Cardiol 26:413–417CrossRefPubMedGoogle Scholar
  28. 28.
    Stenzel M (2013) Intravenous contrast-enhanced sonography in children and adolescents—a single center experience. J Ultrason 13:133–144CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Barr ML, Chiu HK, Li N, et al. (2016) Thyroid dysfunction in children exposed to iodinated contrast media. J Clin Endocrinol Metab 101:2366–2370CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beckett KR, Moriarity AK, Langer JM (2015) Safe use of contrast media: what the radiologist needs to know. Radiographics 35:1738–1750CrossRefPubMedGoogle Scholar
  31. 31.
    Brenner D, Elliston C, Hall E, et al. (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296CrossRefPubMedGoogle Scholar
  32. 32.
    Hu HH, Pokorney A, Towbin RB, et al. (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMedGoogle Scholar
  33. 33.
    Mithal LB, Patel PS, Mithal D, et al. (2017) Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America. Pediatr Radiol 47:657–664CrossRefPubMedGoogle Scholar
  34. 34.
    Choi JY, Lee HC, Yim JH, et al. (2011) Focal nodular hyperplasia or focal nodular hyperplasia-like lesions of the liver: a special emphasis on diagnosis. J Gastroenterol Hepatol 26:1004–1009CrossRefPubMedGoogle Scholar
  35. 35.
    Ma IT, Rojas Y, Masand PM, et al. (2015) Focal nodular hyperplasia in children: an institutional experience with review of the literature. J Pediatr Surg 50:382–387CrossRefPubMedGoogle Scholar
  36. 36.
    Smith EA, Salisbury S, Martin R, et al. (2012) Incidence and etiology of new liver lesions in pediatric patients previously treated for malignancy. AJR Am J Roentgenol 199:186–191CrossRefPubMedGoogle Scholar
  37. 37.
    Strobel D, Seitz K, Blank W, et al. (2009) Tumor-specific vascularization pattern of liver metastasis, hepatocellular carcinoma, hemangioma and focal nodular hyperplasia in the differential diagnosis of 1349 liver lesions in contrast-enhanced ultrasound (CEUS). Ultraschall Med 30:376–382CrossRefPubMedGoogle Scholar
  38. 38.
    Chiorean L, Cui XW, Tannapfel A, et al. (2015) Benign liver tumors in pediatric patients—review with emphasis on imaging features. World J Gastroenterol 21:8541–8561CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chavhan GB, Shelmerdine S, Jhaveri K, et al. (2016) Liver MR imaging in children: current concepts and technique. Radiographics 36:1517–1532CrossRefPubMedGoogle Scholar
  40. 40.
    Yikilmaz A, George M, Lee EY (2017) Pediatric hepatobiliary neoplasms: an overview and update. Radiol Clin North Am 55:741–766CrossRefPubMedGoogle Scholar
  41. 41.
    Bartolotta TV, Vernuccio F, Taibbi A, et al. (2016) Contrast-enhanced ultrasound in focal liver lesions: where do we stand? Semin Ultrasound CT MR 37:573–586CrossRefPubMedGoogle Scholar
  42. 42.
    Hambidge SJ, Davidson AJ, Gonzales R, et al. (2002) Epidemiology of pediatric injury-related primary care office visits in the United States. Pediatrics 109:559–565CrossRefPubMedGoogle Scholar
  43. 43.
    Coley BD, Mutabagani KH, Martin LC, et al. (2000) Focused abdominal sonography for trauma (FAST) in children with blunt abdominal trauma. J Trauma 48:902–906CrossRefPubMedGoogle Scholar
  44. 44.
    Emery KH, McAneney CM, Racadio JM, et al. (2001) Absent peritoneal fluid on screening trauma ultrasonography in children: a prospective comparison with computed tomography. J Pediatr Surg 36:565–569CrossRefPubMedGoogle Scholar
  45. 45.
    Gaines BA (2009) Intra-abdominal solid organ injury in children: diagnosis and treatment. J Trauma 67:S135–S139CrossRefPubMedGoogle Scholar
  46. 46.
    Fenton SJ, Meyers RL, Vargo DJ, et al. (2004) CT scan and the pediatric trauma patient–are we overdoing it? J Pediatr Surg Dec 39(12):1877–1881CrossRefGoogle Scholar
  47. 47.
    Streck CJ, Jewett BM, Wahlquist AH, et al. (2012) Evaluation for intra-abdominal injury in children after blunt torso trauma: can we reduce unnecessary abdominal computed tomography by utilizing a clinical prediction model? J Trauma Acute Care Surg 73:371–376 (discussion 376)CrossRefPubMedGoogle Scholar
  48. 48.
    McGahan JP, Horton S, Gerscovich EO, et al. (2006) Appearance of solid organ injury with contrast-enhanced sonography in blunt abdominal trauma: preliminary experience. AJR Am J Roentgenol 187:658–666CrossRefPubMedGoogle Scholar
  49. 49.
    Sessa B, Trinci M, Ianniello S, et al. (2015) Blunt abdominal trauma: role of contrast-enhanced ultrasound (CEUS) in the detection and staging of abdominal traumatic lesions compared to US and CE-MDCT. Radiol Med 120:180–189CrossRefPubMedGoogle Scholar
  50. 50.
    Lv F, Tang J, Luo Y, et al. (2011) Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma. Radiol Med 116:1076–1082CrossRefPubMedGoogle Scholar
  51. 51.
    Mihalik JE, Smith RS, Toevs CC, et al. (2012) The use of contrast-enhanced ultrasound for the evaluation of solid abdominal organ injury in patients with blunt abdominal trauma. J Trauma Acute Care Surg 73:1100–1105CrossRefPubMedGoogle Scholar
  52. 52.
    Darge K (2008) Voiding urosonography with ultrasound contrast agents for the diagnosis of vesicoureteric reflux in children. I. Procedure. Pediatr Radiol 38:40–53CrossRefPubMedGoogle Scholar
  53. 53.
    Darge K (2008) Voiding urosonography with US contrast agents for the diagnosis of vesicoureteric reflux in children. II. Comparison with radiological examinations. Pediatr Radiol 38:54–63 (quiz 126–127)PubMedGoogle Scholar
  54. 54.
    Koff SA (1983) Estimating bladder capacity in children. Urology 21:248CrossRefPubMedGoogle Scholar
  55. 55.
    Papadopoulou F, Ntoulia A, Siomou E, et al. (2014) Contrast-enhanced voiding urosonography with intravesical administration of a second-generation ultrasound contrast agent for diagnosis of vesicoureteral reflux: prospective evaluation of contrast safety in 1010 children. Pediatr Radiol 44(6):719–728CrossRefPubMedGoogle Scholar
  56. 56.
    Duran C, del Riego J, Riera L, et al. (2012) Voiding urosonography including urethrosonography: high-quality examinations with an optimised procedure using a second-generation US contrast agent. Pediatr Radiol 42:660–667CrossRefPubMedGoogle Scholar
  57. 57.
    Papadopoulou F, Ntoulia A, Siomou E, et al. (2014) Contrast-enhanced voiding urosonography with intravesical administration of a second-generation ultrasound contrast agent for diagnosis of vesicoureteral reflux: prospective evaluation of contrast safety in 1010 children. Pediatr Radiol 44:719–728CrossRefPubMedGoogle Scholar
  58. 58.
    Back SJ, Edgar JC, Canning DA, et al. (2015) Contrast-enhanced voiding urosonography: in vitro evaluation of a second-generation ultrasound contrast agent for in vivo optimization. Pediatr Radiol 45:1496–1505CrossRefPubMedGoogle Scholar
  59. 59.
    Darge K, Troeger J (2002) Vesicoureteral reflux grading in contrast-enhanced voiding urosonography. Eur J Radiol 43:122–128CrossRefPubMedGoogle Scholar
  60. 60.
    Papadopoulou F, Tsampoulas C, Siomou E, et al. (2006) Cyclic contrast-enhanced harmonic voiding urosonography for the evaluation of reflux. Can we keep the cost of the examination low? Eur Radiol 16:2521–2526CrossRefPubMedGoogle Scholar
  61. 61.
    Duran C, Valera A, Alguersuari A, et al. (2009) Voiding urosonography: the study of the urethra is no longer a limitation of the technique. Pediatr Radiol 39:124–131CrossRefPubMedGoogle Scholar
  62. 62.
    Babu R, Gopinath V, Sai V (2015) Voiding urosonography: contrast-enhanced ultrasound cystography to diagnose vesico-ureteric reflux: a pilot study. J Indian Assoc Pediatr Surg 20:40–41CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Faizah MZ, Hamzaini AH, Kanaheswari Y, et al. (2015) Contrast enhanced voiding urosonography (ce-VUS) as a radiation-free technique in the diagnosis of vesicoureteric reflux: our early experience. Med J Malays 70:269–272Google Scholar
  64. 64.
    Fernandez-Ibieta M, Parrondo-Muinos C, Fernandez-Masaguer LC, et al. (2016) Voiding urosonography with second-generation contrast as a main tool for examining the upper and lower urinary tract in children. Pilot study. Actas Urol Esp 40:183–189CrossRefPubMedGoogle Scholar
  65. 65.
    Kis E, Nyitrai A, Varkonyi I, et al. (2010) Voiding urosonography with second-generation contrast agent versus voiding cystourethrography. Pediatr Nephrol 25:2289–2293CrossRefPubMedGoogle Scholar
  66. 66.
    Kljucevsek D, Battelino N, Tomazic M, et al. (2012) A comparison of echo-enhanced voiding urosonography with X-ray voiding cystourethrography in the first year of life. Acta Paediatr 101:e235–e239CrossRefPubMedGoogle Scholar
  67. 67.
    Wong LS, Tse KS, Fan TW, et al. (2014) Voiding urosonography with second-generation ultrasound contrast versus micturating cystourethrography in the diagnosis of vesicoureteric reflux. Eur J Pediatr 173:1095–1101CrossRefPubMedGoogle Scholar
  68. 68.
    Ascenti G, Zimbaro G, Mazziotti S, et al. (2004) Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent. Pediatr Radiol 34:481–487CrossRefPubMedGoogle Scholar
  69. 69.
    Darge K, Beer M, Gordjani N (2004) Contrast-enhanced voiding urosonography with the use of a 2nd generation US contrast medium: preliminary results. Pediatr Radiol 34:97CrossRefGoogle Scholar
  70. 70.
    Papadopoulou F, Anthopoulou A, Siomou E, et al. (2009) Harmonic voiding urosonography with a second-generation contrast agent for the diagnosis of vesicoureteral reflux. Pediatr Radiol 39:239–244CrossRefPubMedGoogle Scholar
  71. 71.
    Papadopoulou F, Anthopoulou A, Fotopoulos A, et al (2007) Is reflux missed on fluoroscopic voiding cystourethrography and demonstrated only by contrast-enhanced voiding urosonography clinically important? Pediatr Radiol:S105–S118Google Scholar
  72. 72.
    Battelino N, Kljucevsek D, Tomazic M, et al. (2016) Vesicoureteral reflux detection in children: a comparison of the midline-to-orifice distance measurement by ultrasound and voiding urosonography. Pediatr Nephrol 31(6):957–967CrossRefPubMedGoogle Scholar
  73. 73.
    Piskunowicz M, Swieton D, Rybczynska D, et al. (2016) Premature destruction of microbubbles during voiding urosonography in children and possible underlying mechanisms: post hoc analysis from the prospective study. Biomed Res Int 2016:1764692CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wozniak MM, Osemlak P, Pawelec A, et al. (2014) Intraoperative contrast-enhanced urosonography during endoscopic treatment of vesicoureteral reflux in children. Pediatr Radiol 44:1093–1100CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wozniak MM, Wieczorek AP, Pawelec A, et al. (2016) Two-dimensional (2D), three-dimensional static (3D) and real-time (4D) contrast enhanced voiding urosonography (ceVUS) versus voiding cystourethrography (VCUG) in children with vesicoureteral reflux. Eur J Radiol 85:1238–1245CrossRefPubMedGoogle Scholar
  76. 76.
    Zerin JM, Shulkin BL (1992) Postprocedural symptoms in children who undergo imaging studies of the urinary tract: is it the contrast material or the catheter? Radiology 182:727–730CrossRefPubMedGoogle Scholar
  77. 77.
    Miller DL, Dou C, Wiggins RC (2008) Frequency dependence of kidney injury induced by contrast-aided diagnostic ultrasound in rats. Ultrasound Med Biol 34:1678–1687CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of RadiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations