Advertisement

Abdominal Radiology

, Volume 42, Issue 11, pp 2710–2724 | Cite as

Updates for the radiologist in non-muscle-invasive, muscle-invasive, and metastatic bladder cancer

  • Jooae ChoeEmail author
  • Marta Braschi-Amirfarzan
  • Sree Harsha Tirumani
  • Atul B. Shinagare
  • Kyung Won Kim
  • Nikhil H. Ramaiya
  • Katherine M. Krajewski
Pictorial essay
  • 448 Downloads

Abstract

Urothelial bladder cancer is a common malignancy requiring a multidisciplinary approach to treatment. Significant recent advances have been made in terms of the genetic and molecular characterization of bladder cancer subtypes, and novel treatment approaches are being investigated and approved. Given the important role of imaging in the diagnosis, staging, and follow-up of this disease, it is necessary for radiologists to remain up-to-date in terms of nomenclature and standards of care. In this review, recent developments in bladder cancer characterization and treatment will be discussed, with reference to the contributions of imaging in non-muscle-invasive, muscle-invasive, and metastatic settings.

Keywords

Bladder cancer Urothelial carcinoma Diagnosis Management Oncologic imaging 

Notes

Compliance with ethical standards

Conflict of interest

Atul B. Shinagare: Consultant, Arog Pharmaceuticals (not directly related to the contents of this manuscript). No disclosures for the other authors.

References

  1. 1.
    American Cancer Society. Key statistics for bladder cancer. http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-key-statistics. Accessed 23 May 2016
  2. 2.
    Davis R, Jones JS, Barocas DA, et al. (2012) Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J Urol 188:2473–2481. doi: 10.1016/j.juro.2012.09.078 CrossRefPubMedGoogle Scholar
  3. 3.
    American Cancer Society. Signs and symptoms of bladder cancer http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-signs-and-symptoms. 2016
  4. 4.
    American College of Radiology. ACR appropriateness criteria. Topic: hematuria https://acsearch.acr.org/docs/69490/Narrative/. 2014
  5. 5.
    Mariani AJ, Mariani MC, Macchioni C, et al. (1989) The significance of adult hematuria: 1,000 hematuria evaluations including a risk-benefit and cost-effectiveness analysis. J Urol 141:350–355CrossRefPubMedGoogle Scholar
  6. 6.
    Grossfeld GD, Litwin MS, Wolf JS, et al. (2001) Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy—part I: definition, detection, prevalence, and etiology. Urology 57:599–603CrossRefPubMedGoogle Scholar
  7. 7.
    Shinagare AB, Silverman SG, Gershanik EF, et al. (2014) Evaluating hematuria: impact of guideline adherence on urologic cancer diagnosis. Am J Med 127:625–632. doi: 10.1016/j.amjmed.2014.02.013 CrossRefPubMedGoogle Scholar
  8. 8.
    Black PC, Brown GA, Dinney CP (2009) The impact of variant histology on the outcome of bladder cancer treated with curative intent. Urol Oncol 27:3–7. doi: 10.1016/j.urolonc.2007.07.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Wasco MJ, Daignault S, Zhang Y, et al. (2007) Urothelial carcinoma with divergent histologic differentiation (mixed histologic features) predicts the presence of locally advanced bladder cancer when detected at transurethral resection. Urology 70:69–74. doi: 10.1016/j.urology.2007.03.033 CrossRefPubMedGoogle Scholar
  10. 10.
    Moch H, Humphrey PA, Ulbright TM, Reuter V (2016) WHO classification of tumours of the urinary system and male genital organs. Lyon: International Agency for Research on CancerGoogle Scholar
  11. 11.
    Wong-You-Cheong JJ, Woodward PJ, Manning MA, Sesterhenn IA (2006) From the archives of the AFIP: neoplasms of the urinary bladder: radiologic–pathologic correlation. Radiographics 26:553–580. doi: 10.1148/rg.262055172 CrossRefPubMedGoogle Scholar
  12. 12.
    Burger M, Catto JW, Dalbagni G, et al. (2013) Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 63:234–241. doi: 10.1016/j.eururo.2012.07.033 CrossRefPubMedGoogle Scholar
  13. 13.
    Saito W, Amanuma M, Tanaka J, Heshiki A (2000) Histopathological analysis of a bladder cancer stalk observed on MRI. Magn Reson Imaging 18:411–415CrossRefPubMedGoogle Scholar
  14. 14.
    Billerey C, Chopin D, Aubriot-Lorton MH, et al. (2001) Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol 158:1955–1959. doi: 10.1016/s0002-9440(10)64665-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van Rhijn BW, Lurkin I, Radvanyi F, et al. (2001) The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61:1265–1268PubMedGoogle Scholar
  16. 16.
    See WA (2013) Commentary on “Carboplatin based induction chemotherapy for nonorgan confined bladder cancer—a reasonable alternative for cisplatin unfit patients?” Mertens LS, Meijer RP, Kerst JM, Bergman AM, van Tinteren H, van Rhijn BW, Horenblas S, Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands: J Urol 2012;188(4):1108–1113 (Epub 2012 Aug 15). Urol Oncol 31:716–717. doi: 10.1016/j.urolonc.2013.03.012 Google Scholar
  17. 17.
    Duenas M, Martinez-Fernandez M, Garcia-Escudero R, et al. (2015) PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol Carcinog 54:566–576. doi: 10.1002/mc.22125 CrossRefPubMedGoogle Scholar
  18. 18.
    Solomon JP, Hansel DE (2015) Morphologic and molecular characteristics of bladder cancer. Surg Pathol Clin 8:663–676. doi: 10.1016/j.path.2015.07.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Humphrey PA, Moch H, Cubilla AL, et al. (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs—part b: prostate and bladder tumours. Eur Urol 70:106–119. doi: 10.1016/j.eururo.2016.02.028 CrossRefPubMedGoogle Scholar
  20. 20.
    Lindgren D, Frigyesi A, Gudjonsson S, et al. (2010) Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 70:3463–3472. doi: 10.1158/0008-5472.can-09-4213 CrossRefPubMedGoogle Scholar
  21. 21.
    The Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322. doi: 10.1038/nature12965 CrossRefGoogle Scholar
  22. 22.
    National Comprehensive Cancer Network. (2016) NCCN Clinical Practice Guidelines in Oncology (NCCN guidelines) Bladder Cancer (version 2.2016)Google Scholar
  23. 23.
    van der Heijden AG, Witjes JA (2009) Recurrence, progression, and follow-up in non–muscle-invasive bladder cancer. Eur Urol Suppl 8:556–562. doi: 10.1016/j.eursup.2009.06.010 CrossRefGoogle Scholar
  24. 24.
    Palou J, Rodriguez-Rubio F, Huguet J, et al. (2005) Multivariate analysis of clinical parameters of synchronous primary superficial bladder cancer and upper urinary tract tumor. J Urol 174:859–861 (discussion 861). doi: 10.1097/01.ju.0000169424.79702.6d CrossRefPubMedGoogle Scholar
  25. 25.
    Caoili EM, Cohan RH, Inampudi P, et al. (2005) MDCT urography of upper tract urothelial neoplasms. AJR Am J Roentgenol 184:1873–1881. doi: 10.2214/ajr.184.6.01841873 CrossRefPubMedGoogle Scholar
  26. 26.
    Cowan NC, Turney BW, Taylor NJ, et al. (2007) Multidetector computed tomography urography for diagnosing upper urinary tract urothelial tumour. BJU Int 99:1363–1370. doi: 10.1111/j.1464-410X.2007.06766.x CrossRefPubMedGoogle Scholar
  27. 27.
    Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, et al. (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17. doi: 10.1007/s00330-007-0792-x CrossRefGoogle Scholar
  28. 28.
    Knox MK, Cowan NC, Rivers-Bowerman MD, Turney BW (2008) Evaluation of multidetector computed tomography urography and ultrasonography for diagnosing bladder cancer. Clin Radiol 63:1317–1325. doi: 10.1016/j.crad.2008.07.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Cohan RH, Caoili EM, Cowan NC, et al. (2009) MDCT urography: exploring a new paradigm for imaging of bladder cancer. Am J Roentgenol 192:1501–1508. doi: 10.2214/AJR.09.2344 CrossRefGoogle Scholar
  30. 30.
    Sadow CA, Silverman SG, O’Leary MP, Signorovitch JE (2008) Bladder cancer detection with CT urography in an Academic Medical Center. Radiology 249:195–202. doi: 10.1148/radiol.2491071860 CrossRefPubMedGoogle Scholar
  31. 31.
    Ma W, Kang SK, Hricak H, et al. (2009) Imaging appearance of granulomatous disease after intravesical Bacille Calmette–Guérin (BCG) treatment of bladder carcinoma. Am J Roentgenol 192:1494–1500. doi: 10.2214/AJR.08.1962 CrossRefGoogle Scholar
  32. 32.
    Tekes A, Kamel I, Imam K, et al. (2005) Dynamic MRI of bladder cancer: evaluation of staging accuracy. AJR Am J Roentgenol 184:121–127. doi: 10.2214/ajr.184.1.01840121 CrossRefPubMedGoogle Scholar
  33. 33.
    Verma S, Rajesh A, Prasad SR, et al. (2012) Urinary bladder cancer: role of MR imaging. Radiographics 32:371–387. doi: 10.1148/rg.322115125 CrossRefPubMedGoogle Scholar
  34. 34.
    Takeuchi M, Sasaki S, Naiki T, et al. (2013) MR imaging of urinary bladder cancer for T-staging: a review and a pictorial essay of diffusion-weighted imaging. J Magn Reson Imaging 38:1299–1309. doi: 10.1002/jmri.24227 CrossRefPubMedGoogle Scholar
  35. 35.
    Takeuchi M, Sasaki S, Ito M, et al. (2009) Urinary bladder cancer: diffusion-weighted MR imaging—accuracy for diagnosing T stage and estimating histologic grade. Radiology 251:112–121. doi: 10.1148/radiol.2511080873 CrossRefPubMedGoogle Scholar
  36. 36.
    Kim B, Semelka RC, Ascher SM, et al. (1994) Bladder tumor staging: comparison of contrast-enhanced CT, T1- and T2-weighted MR imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology 193:239–245. doi: 10.1148/radiology.193.1.8090898 CrossRefPubMedGoogle Scholar
  37. 37.
    Thoeny HC, Froehlich JM, Triantafyllou M, et al. (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 273:125–135. doi: 10.1148/radiol.14132921 CrossRefPubMedGoogle Scholar
  38. 38.
    Mir N, Sohaib SA, Collins D, Koh DM (2010) Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol 54:358–364. doi: 10.1111/j.1754-9485.2010.02182.x CrossRefPubMedGoogle Scholar
  39. 39.
    Thoeny HC, Forstner R, Keyzer FD (2012) Genitourinary applications of diffusion-weighted MR imaging in the pelvis. Radiology 263:326–342. doi: 10.1148/radiol.12110446 CrossRefPubMedGoogle Scholar
  40. 40.
    Ganeshalingam S, Koh DM (2009) Nodal staging. Cancer Imaging 9:104–111CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Beyersdorff D, Zhang J, Schoder H, et al. (2008) Bladder cancer: can imaging change patient management? Curr Opin Urol 18:98–104. doi: 10.1097/MOU.0b013e3282f13aac CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang J, Gerst S, Lefkowitz RA, Bach A (2007) Imaging of bladder cancer. Radiol Clin N Am 45:183–205. doi: 10.1016/j.rcl.2006.10.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Rajesh A, Sokhi HK, Fung R, et al. (2011) Bladder cancer: evaluation of staging accuracy using dynamic MRI. Clin Radiol 66:1140–1145. doi: 10.1016/j.crad.2011.05.019 CrossRefPubMedGoogle Scholar
  44. 44.
    Swinnen G, Maes A, Pottel H, et al. (2010) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol 57:641–647. doi: 10.1016/j.eururo.2009.05.014 CrossRefPubMedGoogle Scholar
  45. 45.
    Paik ML, Scolieri MJ, Brown SL, et al. (2000) Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol 163:1693–1696CrossRefPubMedGoogle Scholar
  46. 46.
    Bouchelouche K, Oehr P (2008) Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review. J Urol 179:34–45. doi: 10.1016/j.juro.2007.08.176 CrossRefPubMedGoogle Scholar
  47. 47.
    Orevi M, Klein M, Mishani E, et al. (2012) 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med 37:e67–e72. doi: 10.1097/RLU.0b013e31824786e7 CrossRefPubMedGoogle Scholar
  48. 48.
    Ceci F, Bianchi L, Graziani T, et al. (2015) 11C-choline PET/CT and bladder cancer: lymph node metastasis assessment with pathological specimens as reference standard. Clin Nucl Med 40:e124–e128. doi: 10.1097/rlu.0000000000000604 CrossRefPubMedGoogle Scholar
  49. 49.
    Clark PE, Spiess PE, Agarwal N, et al. (2016) NCCN guidelines insights: bladder cancer, version 2.2016. J Natl Compr Cancer Netw 14:1213–1224CrossRefGoogle Scholar
  50. 50.
    Harshman LC, Preston MA, Bellmunt J, Beard C (2015) Diagnosis of bladder carcinoma: a clinician’s perspective. Surg Pathol Clin 8:677–685. doi: 10.1016/j.path.2015.07.004 CrossRefPubMedGoogle Scholar
  51. 51.
    Cognetti F, Ruggeri EM, Felici A, et al. (2012) Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann Oncol 23:695–700. doi: 10.1093/annonc/mdr354 CrossRefPubMedGoogle Scholar
  52. 52.
    Nishimura K, Fujiyama C, Nakashima K, et al. (2009) The effects of neoadjuvant chemotherapy and chemo-radiation therapy on MRI staging in invasive bladder cancer: comparative study based on the pathological examination of whole layer bladder wall. Int Urol Nephrol 41:869–875. doi: 10.1007/s11255-009-9566-5 CrossRefPubMedGoogle Scholar
  53. 53.
    Barentsz JO, Berger-Hartog O, Witjes JA, et al. (1998) Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207:791–797. doi: 10.1148/radiology.207.3.9609906 CrossRefPubMedGoogle Scholar
  54. 54.
    Schrier BP, Peters M, Barentsz JO, Witjes JA (2006) Evaluation of chemotherapy with magnetic resonance imaging in patients with regionally metastatic or unresectable bladder cancer. Eur Urol 49:698–703. doi: 10.1016/j.eururo.2006.01.022 CrossRefPubMedGoogle Scholar
  55. 55.
    Choueiri TK, Jacobus S, Bellmunt J, et al. (2014) Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J Clin Oncol 32:1889–1894. doi: 10.1200/JCO.2013.52.4785 CrossRefPubMedGoogle Scholar
  56. 56.
    Dash A, Pettus JA, Herr HW, et al. (2008) A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective experience. Cancer 113:2471–2477. doi: 10.1002/cncr.23848 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shinagare AB, Sadow CA, Silverman SG (2013) Surveillance of patients with bladder cancer following cystectomy: yield of CT urography. Abdom Imaging 38:1415–1421. doi: 10.1007/s00261-013-0024-6 CrossRefPubMedGoogle Scholar
  58. 58.
    National Institutes of Health. SEER Stat Fact Sheets: Bladder Cancer 2013. https://seer.cancer.gov/statfacts/html/urinb.html
  59. 59.
    American Cancer Society (2016) Cancer treatment & survivorship facts & figures 2016–2017. Atlanta: American Cancer SocietyGoogle Scholar
  60. 60.
    Moschini M, Karnes RJ, Sharma V, et al. (2016) Patterns and prognostic significance of clinical recurrences after radical cystectomy for bladder cancer: a 20-year single center experience. Eur J Surg Oncol 42:735–743. doi: 10.1016/j.ejso.2016.02.011 CrossRefPubMedGoogle Scholar
  61. 61.
    Mitra AP, Quinn DI, Dorff TB, et al. (2012) Factors influencing post-recurrence survival in bladder cancer following radical cystectomy. BJU Int 109:846–854. doi: 10.1111/j.1464-410X.2011.10455.x CrossRefPubMedGoogle Scholar
  62. 62.
    Sanderson KM, Cai J, Miranda G, et al. (2007) Upper tract urothelial recurrence following radical cystectomy for transitional cell carcinoma of the bladder: an analysis of 1,069 patients with 10-year followup. J Urol 177:2088–2094. doi: 10.1016/j.juro.2007.01.133 CrossRefPubMedGoogle Scholar
  63. 63.
    Umbreit EC, Crispen PL, Shimko MS, et al. (2010) Multifactorial, site-specific recurrence model after radical cystectomy for urothelial carcinoma. Cancer 116:3399–3407. doi: 10.1002/cncr.25202 CrossRefPubMedGoogle Scholar
  64. 64.
    Shinagare AB, Ramaiya NH, Jagannathan JP, et al. (2011) Metastatic pattern of bladder cancer: correlation with the characteristics of the primary tumor. AJR Am J Roentgenol 196:117–122. doi: 10.2214/ajr.10.5036 CrossRefPubMedGoogle Scholar
  65. 65.
    Wallmeroth A, Wagner U, Moch H, et al. (1999) Patterns of metastasis in muscle-invasive bladder cancer (pT2-4): an autopsy study on 367 patients. Urol Int 62:69–75CrossRefPubMedGoogle Scholar
  66. 66.
    von der Maase H, Sengelov L, Roberts JT, et al. (2005) Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 23:4602–4608. doi: 10.1200/jco.2005.07.757 CrossRefPubMedGoogle Scholar
  67. 67.
    Rosenberg JE, Hoffman-Censits J, Powles T, et al. (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920. doi: 10.1016/s0140-6736(16)00561-4 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wolchok JD, Hoos A, O’Day S, et al. (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420. doi: 10.1158/1078-0432.ccr-09-1624 CrossRefPubMedGoogle Scholar
  69. 69.
    de Velasco G, Krajewski KM, Albiges L, et al. (2016) Radiologic heterogeneity in responses to anti-PD-1/PD-L1 therapy in metastatic renal cell carcinoma. Cancer Immunol Res 4:12–17. doi: 10.1158/2326-6066.cir-15-0197 CrossRefPubMedGoogle Scholar
  70. 70.
    Nishino M, Tirumani SH, Ramaiya NH, Hodi FS (2015) Cancer immunotherapy and immune-related response assessment: the role of radiologists in the new arena of cancer treatment. Eur J Radiol 84:1259–1268. doi: 10.1016/j.ejrad.2015.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kwak JJ, Tirumani SH, Van den Abbeele AD, et al. (2015) Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. Radiographics 35:424–437. doi: 10.1148/rg.352140121 CrossRefPubMedGoogle Scholar
  72. 72.
    Bronstein Y, Ng CS, Hwu P, Hwu WJ (2011) Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy. AJR Am J Roentgenol 197:W992–W1000. doi: 10.2214/ajr.10.6198 CrossRefPubMedGoogle Scholar
  73. 73.
    Nishino M, Ramaiya NH, Awad MM, et al. (2016) PD-1 inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical course. Clin Cancer Res 22:6051–6060. doi: 10.1158/1078-0432.ccr-16-1320 CrossRefPubMedGoogle Scholar
  74. 74.
    Balar A, Bellmunt J, O’Donnell PH, et al. (2016) Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: preliminary results from the phase 2 KEYNOTE-052 study. Ann Oncol. doi: 10.1093/annonc/mdw435.25 Google Scholar
  75. 75.
    Powles T, Huddart RA, Elliott T, et al. (2017) Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor ½—positive metastatic bladder cancer. J Clin Oncol 35:48–55. doi: 10.1200/JCO.2015.66.3468 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Radiology and Research Institute of Radiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
  2. 2.Department of Imaging, Dana Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  3. 3.Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations