Advertisement

Abdominal Radiology

, Volume 42, Issue 11, pp 2639–2645 | Cite as

Whole-volume vs. segmental CT texture analysis of the liver to assess metachronous colorectal liver metastases

  • R. C. J. Beckers
  • R. G. H. Beets-Tan
  • R. S. Schnerr
  • M. Maas
  • L. A. da Costa Andrade
  • G. L. Beets
  • C. H. Dejong
  • J. B. Houwers
  • D. M. J. LambregtsEmail author
Article

Abstract

Purpose

It is unclear whether changes in liver texture in patients with colorectal cancer are caused by diffuse (e.g., perfusional) changes throughout the liver or rather based on focal changes (e.g., presence of occult metastases). The aim of this study is to compare a whole-liver approach to a segmental (Couinaud) approach for measuring the CT texture at the time of primary staging in patients who later develop metachronous metastases and evaluate whether assessing CT texture on a segmental level is of added benefit.

Methods

46 Patients were included: 27 patients without metastases (follow-up >2 years) and 19 patients who developed metachronous metastases within 24 months after diagnosis. Volumes of interest covering the whole liver were drawn on primary staging portal-phase CT. In addition, each liver segment was delineated separately. Mean gray-level intensity, entropy (E), and uniformity (U) were derived with different filters (σ0.5–2.5). Patients/segments without metastases and patients/segments that later developed metachronous metastases were compared using independent samples t tests.

Results

Absolute differences in entropy and uniformity between the group without metastases and the group with metachronous metastases group were consistently smaller for the segmental approach compared to the whole-liver approach. No statistically significant differences were found in the texture measurements between both groups.

Conclusions

In this small patient cohort, we could not demonstrate a clear predictive value to identify patients at risk of developing metachronous metastases within 2 years. Segmental CT texture analysis of the liver probably has no additional benefit over whole-liver texture analysis.

Keywords

Colorectal cancer Liver metastases CT texture Occult disease Metachronous metastases Micro metastases 

Notes

Compliance with ethical standards

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the international and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Due to the retrospective nature of the study informed consent was waived.

References

  1. 1.
    Tanaka S, Imamura Y (2006) International comparisons of cumulative risk of colorectal cancer, from cancer incidence in five continents, vol. VIII. Jpn J Clin Oncol 36(3):186–187. doi: 10.1093/jjco/hyi249 CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA 65(1):5–29. doi: 10.3322/caac.21254 PubMedGoogle Scholar
  3. 3.
    Manfredi S, Lepage C, Hatem C, et al. (2006) Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 244(2):254–259. doi: 10.1097/01.sla.0000217629.94941.cf CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hess KR, Varadhachary GR, Taylor SH, et al. (2006) Metastatic patterns in adenocarcinoma. Cancer 106(7):1624–1633. doi: 10.1002/cncr.21778 CrossRefPubMedGoogle Scholar
  5. 5.
    Landreau P, Drouillard A, Launoy G, et al. (2015) Incidence and survival in late liver metastases of colorectal cancer. J Gastroenterol Hepatol 30(1):82–85. doi: 10.1111/jgh.12685 CrossRefPubMedGoogle Scholar
  6. 6.
    Rudmik LR, Magliocco AM (2005) Molecular mechanisms of hepatic metastasis in colorectal cancer. J Surg Oncol 92(4):347–359. doi: 10.1002/jso.20393 CrossRefPubMedGoogle Scholar
  7. 7.
    Wang SC, Lin JK, Wang HS, et al. (2010) Nuclear expression of CXCR4 is associated with advanced colorectal cancer. Int J Colorectal Dis 25(10):1185–1191. doi: 10.1007/s00384-010-0999-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Slesser AA, Georgiou P, Brown G, et al. (2013) The tumour biology of synchronous and metachronous colorectal liver metastases: a systematic review. Clin Exp Metastasis 30(4):457–470. doi: 10.1007/s10585-012-9551-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Tan EK, Ooi LL (2010) Colorectal cancer liver metastases—understanding the differences in the management of synchronous and metachronous disease. Ann Acad Med Singapore 39(9):715–719Google Scholar
  10. 10.
    Li ZQ, Liu K, Duan JC, et al. (2013) Meta-analysis of simultaneous versus staged resection for synchronous colorectal liver metastases. Hepatol Res 43(1):72–83. doi: 10.1111/j.1872-034X.2012.01050.x CrossRefPubMedGoogle Scholar
  11. 11.
    Yin Z, Liu C, Chen Y, et al. (2013) Timing of hepatectomy in resectable synchronous colorectal liver metastases (SCRLM): simultaneous or delayed? Hepatology 57(6):2346–2357. doi: 10.1002/hep.26283 CrossRefPubMedGoogle Scholar
  12. 12.
    Slesser AA, Simillis C, Goldin R, et al. (2013) A meta-analysis comparing simultaneous versus delayed resections in patients with synchronous colorectal liver metastases. Surg Oncol 22(1):36–47. doi: 10.1016/j.suronc.2012.11.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59(12):1061–1069. doi: 10.1016/j.crad.2004.07.008 CrossRefPubMedGoogle Scholar
  14. 14.
    Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic enhancement in colorectal cancer: texture analysis correlates with hepatic hemodynamics and patient survival. Acad Radiol 14(12):1520–1530. doi: 10.1016/j.acra.2007.06.028 CrossRefPubMedGoogle Scholar
  15. 15.
    Lubner MG, Stabo N, Lubner SJ, et al. (2015) CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 40(7):2331–2337. doi: 10.1007/s00261-015-0438-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Rao SX, Lambregts DM, Schnerr RS, et al. (2014) Whole-liver CT texture analysis in colorectal cancer: does the presence of liver metastases affect the texture of the remaining liver? United Eur Gastroenterol J 2(6):530–538. doi: 10.1177/2050640614552463 CrossRefGoogle Scholar
  17. 17.
    Beckers RCJ, Lambregts DMJ, Schnerr RS, et al. (2017) Whole liver CT texture analysis to predict the development of colorectal liver metastases—A multicentre study. Eur J Radiol 92:64–71. doi: 10.1016/j.ejrad.2017.04.019 CrossRefPubMedGoogle Scholar
  18. 18.
    Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol 14(9):1058–1068. doi: 10.1016/j.acra.2007.05.023 CrossRefPubMedGoogle Scholar
  19. 19.
    Leen E (1999) The detection of occult liver metastases of colorectal carcinoma. J Hepatobiliary Pancreat Surg 6(1):7–15CrossRefPubMedGoogle Scholar
  20. 20.
    Kruskal JB, Thomas P, Kane RA, Goldberg SN (2004) Hepatic perfusion changes in mice livers with developing colorectal cancer metastases. Radiology 231(2):482–490. doi: 10.1148/radiol.2312030160 CrossRefPubMedGoogle Scholar
  21. 21.
    Cuenod C, Leconte I, Siauve N, et al. (2001) Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 218(2):556–561CrossRefPubMedGoogle Scholar
  22. 22.
    Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cognitive Neurosci 19(7):1081–1088. doi: 10.1162/jocn.2007.19.7.1081 CrossRefGoogle Scholar
  23. 23.
    Couinaud C (1957) Le foie: études anatomiques et chirurgicales. Masson & CieGoogle Scholar
  24. 24.
    Rao SX, Lambregts DM, Schnerr RS, et al. (2016) CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United Eur Gastroenterol J 4(2):257–263. doi: 10.1177/2050640615601603 CrossRefGoogle Scholar
  25. 25.
    Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. doi: 10.1016/j.cell.2006.11.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Weinberg R (2013) The biology of cancer. Garland scienceGoogle Scholar
  27. 27.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMedGoogle Scholar
  28. 28.
    Kaplan RN, Riba RD, Zacharoulis S, et al. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. doi: 10.1038/nature04186 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Eveno C, Hainaud P, Rampanou A, et al. (2015) Proof of prometastatic niche induction by hepatic stellate cells. J Surg Res 194(2):496–504. doi: 10.1016/j.jss.2014.11.005 CrossRefPubMedGoogle Scholar
  30. 30.
    Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153CrossRefPubMedGoogle Scholar
  31. 31.
    Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787. doi: 10.4161/cc.5.16.3018 CrossRefPubMedGoogle Scholar
  32. 32.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027. doi: 10.1200/JCO.2005.06.081 CrossRefPubMedGoogle Scholar
  33. 33.
    Miles KA, Leggett DA, Kelley BB, et al. (1998) In vivo assessment of neovascularization of liver metastases using perfusion CT. Br J Radiol 71(843):276–281. doi: 10.1259/bjr.71.843.9616236 CrossRefPubMedGoogle Scholar
  34. 34.
    Archer SG, Gray BN (1989) Vascularization of small liver metastases. Br J Surg 76(6):545–548CrossRefPubMedGoogle Scholar
  35. 35.
    Allison KH, Fligner CL, Parks WT (2004) Radiographically occult, diffuse intrasinusoidal hepatic metastases from primary breast carcinomas: a clinicopathologic study of 3 autopsy cases. Arch Pathol Lab Med 128(12):1418–1423. doi: 10.1043/1543-2165(2004) PubMedGoogle Scholar
  36. 36.
    Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE 10(5):e0124165. doi: 10.1371/journal.pone.0124165 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lambregts DM, Martens MH, Quah RC, et al. (2015) Whole-liver diffusion-weighted MRI histogram analysis: effect of the presence of colorectal hepatic metastases on the remaining liver parenchyma. Eur J Gastroenterol Hepatol 27(4):399–404. doi: 10.1097/MEG.0000000000000316 CrossRefPubMedGoogle Scholar
  38. 38.
    Tsushima Y, Blomley MJ, Yokoyama H, Kusano S, Endo K (2001) Does the presence of distant and local malignancy alter parenchymal perfusion in apparently disease-free areas of the liver? Dig Dis Sci 46(10):2113–2119CrossRefPubMedGoogle Scholar
  39. 39.
    White MJ, O’Gorman RL, Charles-Edwards EM, et al. (2007) Parametric mapping of the hepatic perfusion index with gadolinium-enhanced volumetric MRI. Br J Radiol 80(950):113–120. doi: 10.1259/bjr/36793733 CrossRefPubMedGoogle Scholar
  40. 40.
    Kopljar M, Patrlj L, Busic Z, et al. (2014) Potential use of Doppler perfusion index in detection of occult liver metastases from colorectal cancer. Hepatobiliary Surg Nutr 3(5):259–267. doi: 10.3978/j.issn.2304-3881.2014.09.04 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • R. C. J. Beckers
    • 1
    • 2
    • 3
    • 4
  • R. G. H. Beets-Tan
    • 1
    • 2
  • R. S. Schnerr
    • 3
  • M. Maas
    • 2
  • L. A. da Costa Andrade
    • 5
  • G. L. Beets
    • 1
    • 6
  • C. H. Dejong
    • 4
    • 7
    • 8
  • J. B. Houwers
    • 3
  • D. M. J. Lambregts
    • 2
    Email author
  1. 1.GROW School for Oncology and Developmental BiologyMaastricht University Medical CentreMaastrichtThe Netherlands
  2. 2.Department of RadiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of RadiologyMaastricht University Medical CenterMaastrichtThe Netherlands
  4. 4.Department of SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
  5. 5.Medical Imaging Department and Faculty of MedicineUniversity Hospital of CoimbraCoimbraPortugal
  6. 6.Department of SurgeryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  7. 7.NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
  8. 8.Department of SurgeryRWTH Universitätsklinikum AachenAachenGermany

Personalised recommendations