Advertisement

Abdominal Radiology

, Volume 42, Issue 11, pp 2732–2744 | Cite as

Multiparametric magnetic resonance imaging for transition zone prostate cancer: essential findings, limitations, and future directions

  • Sara LewisEmail author
  • Cecilia Besa
  • Ally Rosen
  • Ardeshir R. Rastinehad
  • Sahar Semaan
  • Stefanie Hectors
  • Bachir Taouli
Pictorial Essay

Abstract

Objective

Review the multiparametric MRI (mpMRI) findings of transition zone (TZ) prostate cancer (PCa) using T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) MRI and to integrate mpMRI findings with clinical history, laboratory values, and histopathology.

Conclusion

TZ prostate tumors are challenging to detect clinically and at MRI. mpMRI using the combination of sequences has the potential to improve accuracy of TZ cancer detection and staging.

Keywords

Prostate cancer Transition zone Multiparametric magnetic resonance imaging (mpMRI) Benign prostatic hypertrophy (BPH) 

Notes

Compliance with ethical standards

Funding

This study did not receive funding.

Conflict of interest

None of the authors declare any conflicts of interest related to this manuscript.

References

  1. 1.
    Howlader N, Noone AM, Krapcho M, et al. (2013) SEER Cancer Statistics Review (CSR) 1975–2010. Cited 1/8/2014Google Scholar
  2. 2.
    McNeal JE, Redwine EA, Freiha FS, Stamey TA, et al. (1988) Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12(12):897–906CrossRefPubMedGoogle Scholar
  3. 3.
    Kundra V, Silverman PM, Matin SF, Choi H (2007) Imaging in oncology from the University of Texas M. D. Anderson Cancer Center: diagnosis, staging, and surveillance of prostate cancer. AJR Am J Roentgenol 189(4):830–844CrossRefPubMedGoogle Scholar
  4. 4.
    Stamey TA, Yemoto CM, McNeal JE, Sigal BM, Johnstone IM (2000) Prostate cancer is highly predictable: a prognostic equation based on all morphological variables in radical prostatectomy specimens. J Urol 163(4):1155–1160CrossRefPubMedGoogle Scholar
  5. 5.
    Erbersdobler A, Augustin H, Schlomm T, Henke RP (2004) Prostate cancers in the transition zone: Part 1; pathological aspects. BJU Int 94(9):1221–1225CrossRefPubMedGoogle Scholar
  6. 6.
    Sinnott JA, Rider JR, Carlsson J, et al. (2015) Molecular differences in transition zone and peripheral zone prostate tumors. Carcinogenesis 36(6):632–638CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Augustin H, Erbersdobler A, Hammerer PG, Graefen M, Huland H (2004) Prostate cancers in the transition zone: Part 2; clinical aspects. BJU Int 94(9):1226–1229CrossRefPubMedGoogle Scholar
  8. 8.
    Noguchi M, Stamey TA, Neal JE, Yemoto CE (2000) An analysis of 148 consecutive transition zone cancers: clinical and histological characteristics. J Urol 163(6):1751–1755CrossRefPubMedGoogle Scholar
  9. 9.
    Grignon DJ, Sakr WA (1994) Zonal origin of prostatic adenocarcinoma: are there biologic differences between transition zone and peripheral zone adenocarcinomas of the prostate gland? J Cell Biochem Suppl 19:267–269PubMedGoogle Scholar
  10. 10.
    Greene DR, Wheeler TM, Egawa S, Weaver RP, Scardino PT (1991) Relationship between clinical stage and histological zone of origin in early prostate cancer: morphometric analysis. Br J Urol 68(5):499–509CrossRefPubMedGoogle Scholar
  11. 11.
    Cohen RJ, Shannon BA, Phillips M, et al. (2008) Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features. J Urol 179(5):1762–1767; discussion 1767.Google Scholar
  12. 12.
    King CR, Ferrari M, Brooks JD (2009) Prognostic significance of prostate cancer originating from the transition zone. Urol Oncol 27(6):592–597CrossRefPubMedGoogle Scholar
  13. 13.
    Lawrentschuk N, Haider MA, Daljeet N (2010) ‘Prostatic evasive anterior tumours’: the role of magnetic resonance imaging. BJU Int 105(9):1231–1236CrossRefPubMedGoogle Scholar
  14. 14.
    O’Neil LM, Walsh S, Cohen RJ, Lee S (2015) Prostate carcinoma with positive margins at radical prostatectomy: role of tumour zonal origin in biochemical recurrence. BJU Int 116(Suppl 3):42–48CrossRefPubMedGoogle Scholar
  15. 15.
    Margel D, Yap SA, Lawrentschuk N, et al. (2012) Impact of multiparametric endorectal coil prostate magnetic resonance imaging on disease reclassification among active surveillance candidates: a prospective cohort study. J Urol 187(4):1247–1252CrossRefPubMedGoogle Scholar
  16. 16.
    Franiel T, Stephan C, Erbersdobler A, et al. (2011) Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding–multiparametric MR imaging for detection and biopsy planning. Radiology 259(1):162–172CrossRefPubMedGoogle Scholar
  17. 17.
    Haffner J, Lemaitre L, Puech P, et al. (2011) Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 108(8 Pt 2):E171–E178CrossRefPubMedGoogle Scholar
  18. 18.
    Rosenkrantz AB, Kim S, Lim RP, et al. (2013) Prostate cancer localization using multiparametric MR imaging: comparison of Prostate Imaging Reporting and Data System (PI-RADS) and Likert scales. Radiology 269(2):482–492CrossRefPubMedGoogle Scholar
  19. 19.
    Haider MA, van der Kwast TH, Tanguay J, et al. (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189(2):323–328CrossRefPubMedGoogle Scholar
  20. 20.
    Schimmoller L, Quentin M, Arsov C, et al. (2014) MR-sequences for prostate cancer diagnostics: validation based on the PI-RADS scoring system and targeted MR-guided in-bore biopsy. Eur Radiol 24(10):2582–2589CrossRefPubMedGoogle Scholar
  21. 21.
    Bratan F, Niaf E, Melodelima C, et al. (2013) Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 23(7):2019–2029CrossRefPubMedGoogle Scholar
  22. 22.
    Chesnais AL, Niaf E, Bratan F, et al. (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68(6):e323–e330CrossRefPubMedGoogle Scholar
  23. 23.
    Turkbey B, Mani H, Shah V, et al. (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186(5):1818–1824CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schimmoller L, Quentin M, Arsov C, et al. (2014) Predictive power of the ESUR scoring system for prostate cancer diagnosis verified with targeted MR-guided in-bore biopsy. Eur J Radiol 83(12):2103–2108CrossRefPubMedGoogle Scholar
  25. 25.
    Dikaios N, Alkalbani J, Sidhu HS, et al. (2015) Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI. Eur Radiol 25(2):523–532CrossRefPubMedGoogle Scholar
  26. 26.
    Barentsz JO, Richenberg J, Clements R, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jung JA, Coakley FV, Vigneron DB, et al. (2004) Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology 233(3):701–708CrossRefPubMedGoogle Scholar
  28. 28.
    Weinreb JC, Barentsz JO, Choyke PL, et al. (2016) PI-RADS prostate imaging-reporting and data system: 2015, version 2. Eur Urol 69(1):16–40CrossRefPubMedGoogle Scholar
  29. 29.
    Verma S, Rajesh A (2011) A clinically relevant approach to imaging prostate cancer: review. AJR Am J Roentgenol 196(3 Suppl):S1–S10; Quiz S11–S14Google Scholar
  30. 30.
    Hansford BG, Peng Y, Jiang Y, et al. (2014) Revisiting the central gland anatomy via MRI: does the central gland extend below the level of verumontanum? J Magn Reson Imaging 39(1):167–171CrossRefPubMedGoogle Scholar
  31. 31.
    Vargas HA, Akin O, Franiel T, et al. (2012) Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology 262(3):894–902CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Allen KS, Kressel HY, Arger PH, et al. (1989) Age-related changes of the prostate: evaluation by MR imaging. AJR Am J Roentgenol 152(1):77–81CrossRefPubMedGoogle Scholar
  33. 33.
    Pokharel SS, Patel NU, Garg K, et al. (2015) Multi-parametric MRI findings of transitional zone prostate cancers: correlation with 3-dimensional transperineal mapping biopsy. Abdom Imaging 40(1):143–150CrossRefPubMedGoogle Scholar
  34. 34.
    Jung SI, Donati OF, Vargas HA, et al. (2013) Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology 269(2):493–503CrossRefPubMedGoogle Scholar
  35. 35.
    Baur AD, Daqqaq T, Wagner M, et al. (2016) T2- and diffusion-weighted magnetic resonance imaging at 3T for the detection of prostate cancer with and without endorectal coil: an intraindividual comparison of image quality and diagnostic performance. Eur J Radiol 85(6):1075–1084CrossRefPubMedGoogle Scholar
  36. 36.
    Turkbey B, Merino MJ, Gallardo EC, et al. (2014) Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging 39(6):1443–1448CrossRefPubMedGoogle Scholar
  37. 37.
    Weinreb JC, Barentsz JO, Choyke PL, et al. (2016) PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur Urol 69(1):16–40CrossRefPubMedGoogle Scholar
  38. 38.
    Kanal E, Maravilla K, Rowley HA (2014) Gadolinium contrast agents for CNS imaging: current concepts and clinical evidence. AJNR Am J Neuroradiol 35(12):2215–2226CrossRefPubMedGoogle Scholar
  39. 39.
    McNeal JE, Haillot O (2001) Patterns of spread of adenocarcinoma in the prostate as related to cancer volume. Prostate 49(1):48–57CrossRefPubMedGoogle Scholar
  40. 40.
    Akin O, Sala E, Moskowitz CS, et al. (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239(3):784–792CrossRefPubMedGoogle Scholar
  41. 41.
    Li H, Sugimura K, Kitamura Y, et al. (2006) Conventional MRI capabilities in the diagnosis of prostate cancer in the transition zone. AJR Am J Roentgenol 186(3):729–742CrossRefPubMedGoogle Scholar
  42. 42.
    Oto A, Kayhan A, Jiang Y, et al. (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257(3):715–723CrossRefPubMedGoogle Scholar
  43. 43.
    Lemaitre L, Puech P, Poncelet E, et al. (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19(2):470–480CrossRefPubMedGoogle Scholar
  44. 44.
    Le Bihan D (1991) Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7(1):1–30PubMedGoogle Scholar
  45. 45.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635CrossRefPubMedGoogle Scholar
  46. 46.
    Kim CK, Park BK, Han JJ, et al. (2007) Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 31(3):449–454CrossRefPubMedGoogle Scholar
  47. 47.
    Tamada T, Sone T, Jo Y, et al. (2008) Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging 28(3):720–726CrossRefPubMedGoogle Scholar
  48. 48.
    Kim CK, Park BK, Lee HM, et al. (2007) Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol 42(12):842–847CrossRefPubMedGoogle Scholar
  49. 49.
    Noworolski SM, Vigneron DB, Chan AP, et al. (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26(8):1071–1080CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Elbuluk O, Muradyan N, Shih J, et al. (2016) Differentiating transition zone cancers from benign prostatic hyperplasia by quantitative multiparametric magnetic resonance imaging. J Comput Assist Tomogr 40(2):218–224CrossRefPubMedGoogle Scholar
  51. 51.
    Salami SS, Ben-Levi E, Yaskiv O, et al. (2016) Risk stratification of prostate cancer utilizing apparent diffusion coefficient value and lesion volume on multiparametric MRI. J Magn Reson Imaging 45(2):610–616CrossRefPubMedGoogle Scholar
  52. 52.
    Park SY, Kim CK, Park BK, et al. (2014) Diffusion-tensor MRI at 3 T: differentiation of central gland prostate cancer from benign prostatic hyperplasia. AJR Am J Roentgenol 202(3):W254–W262CrossRefPubMedGoogle Scholar
  53. 53.
    Itou Y, Nakanishi K, Narumi Y, et al. (2011) Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging 33(1):167–172CrossRefPubMedGoogle Scholar
  54. 54.
    Turkbey B, Shah VP, Pang Y, et al. (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258(2):488–495CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vargas HA, Akin O, Franiel T, et al. (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kobus T, Vos PC, Hambrock T, et al. (2012) Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology 265(2):457–467CrossRefPubMedGoogle Scholar
  57. 57.
    Hoeks CM, Barentsz JO, Hambrock T, et al. (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66CrossRefPubMedGoogle Scholar
  58. 58.
    Yoshizako T, Wada A, Hayashi T, et al. (2008) Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol 49(10):1207–1213CrossRefPubMedGoogle Scholar
  59. 59.
    Delongchamps NB, Rouanne M, Flam T, et al. (2011) Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 107(9):1411–1418CrossRefPubMedGoogle Scholar
  60. 60.
    Gupta RT, Kauffman CR, Garcia-Reyes K, et al. (2015) Apparent diffusion coefficient values of the benign central zone of the prostate: comparison with low- and high-grade prostate cancer. AJR Am J Roentgenol 205(2):331–336CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rosenkrantz AB, Kim S, Campbell N, et al. (2015) Transition zone prostate cancer: revisiting the role of multiparametric MRI at 3 T. AJR Am J Roentgenol 204(3):W266–W272CrossRefPubMedGoogle Scholar
  62. 62.
    Katahira K, Takahara T, Kwee TC, et al. (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21(1):188–196CrossRefPubMedGoogle Scholar
  63. 63.
    American College of Radiology (2014) Magnetic Resonance Prostate Imaging Reporting and Data System (MR PI-RADS). http://www.acr.org/Quality-Safety/Resources/PIRADS
  64. 64.
    Sung YS, Kwon HJ, Park BW, et al. (2011) Prostate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter maps. AJR Am J Roentgenol 197(5):1122–1129CrossRefPubMedGoogle Scholar
  65. 65.
    Engelbrecht MR, Huisman HJ, Laheji RJ, et al. (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229(1):248–254CrossRefPubMedGoogle Scholar
  66. 66.
    van Niekerk CG, Witjes JA, Barentsz JO, van der Laak JA, Hulsbergen-van de Kaa CA (2013) Microvascularity in transition zone prostate tumors resembles normal prostatic tissue. Prostate 73(5):467–475CrossRefPubMedGoogle Scholar
  67. 67.
    Hoeks CM, Hambrock T, Yakar D, et al. (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266(1):207–217CrossRefPubMedGoogle Scholar
  68. 68.
    Rastinehad AR, Abboud SF, George AK, et al. (2016) Reproducibility of multiparametric magnetic resonance imaging and fusion guided prostate biopsy: multi-institutional external validation by a propensity score matched cohort. J Urol 195(6):1737–1743CrossRefPubMedGoogle Scholar
  69. 69.
    Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Edge SB, Byrd DR, Compton CC, et al. (2010) AJCC cancer staging manual, 7th edn. New York: SpringerGoogle Scholar
  71. 71.
    Labanaris AP, Zugor V, Takriti S, et al. (2009) The role of conventional and functional endorectal magnetic resonance imaging in the decision of whether to preserve or resect the neurovascular bundles during radical retropubic prostatectomy. Scand J Urol Nephrol 43(1):25–31CrossRefPubMedGoogle Scholar
  72. 72.
    Greene DR, Wheeler TM, Egawa S, Dunn JK, Scardino PT (1991) A comparison of the morphological features of cancer arising in the transition zone and in the peripheral zone of the prostate. J Urol 146(4):1069–1076CrossRefPubMedGoogle Scholar
  73. 73.
    McNeal JE (1992) Cancer volume and site of origin of adenocarcinoma in the prostate: relationship to local and distant spread. Hum Pathol 23(3):258–266CrossRefPubMedGoogle Scholar
  74. 74.
    Liu X, Zhou L, Peng W, Wang C, Wang H (2013) Differentiation of central gland prostate cancer from benign prostatic hyperplasia using monoexponential and biexponential diffusion-weighted imaging. Magn Reson Imaging 31(8):1318–1324CrossRefPubMedGoogle Scholar
  75. 75.
    Leake JL, Hardman R, Ojili V, et al. (2014) Prostate MRI: access to and current practice of prostate MRI in the United States. J Am Coll Radiol 11(2):156–160CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tan CH, Wang J, Kundra V (2011) Diffusion weighted imaging in prostate cancer. Eur Radiol 21(3):593–603CrossRefPubMedGoogle Scholar
  77. 77.
    Thormer G, Otto J, Reiss-Zimmermann M, et al. (2012) Diagnostic value of ADC in patients with prostate cancer: influence of the choice of b values. Eur Radiol 22(8):1820–1828CrossRefPubMedGoogle Scholar
  78. 78.
    Peng Y, Jiang Y, Antic T, et al. (2014) Apparent diffusion coefficient for prostate cancer imaging: impact of B values. AJR Am J Roentgenol 202(3):W247–W253CrossRefPubMedGoogle Scholar
  79. 79.
    Dickinson L, Ahmed HU, Allen C, et al. (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494CrossRefPubMedGoogle Scholar
  80. 80.
    Heye T, Davenport MS, Horvath JJ, et al. (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266(3):801–811CrossRefPubMedGoogle Scholar
  81. 81.
    Wibmer A, Vargas HA, Donahue TF, et al. (2015) Diagnosis of extracapsular extension of prostate cancer on prostate MRI: impact of second-opinion readings by subspecialized genitourinary oncologic radiologists. AJR Am J Roentgenol 205(1):W73–W78CrossRefPubMedGoogle Scholar
  82. 82.
    Akin O, Riedl CC, Ishill NM, et al. (2010) Interactive dedicated training curriculum improves accuracy in the interpretation of MR imaging of prostate cancer. Eur Radiol 20(4):995–1002CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Grant KB, Agarwal HK, Shih JH, et al. (2015) Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging 40(3):578–586CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Le Bihan D, Mangin JF, Poupon C, et al. (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546CrossRefPubMedGoogle Scholar
  85. 85.
    Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505CrossRefPubMedGoogle Scholar
  86. 86.
    Döpfert J, Lemke A, Weidner A, Schad LR (2011) Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 29(8):1053–1058CrossRefPubMedGoogle Scholar
  87. 87.
    Mazaheri Y, Vargas HA, Akin O, Goldman DA, Hricak H (2012) Reducing the influence of b-value selection on diffusion-weighted imaging of the prostate: evaluation of a revised monoexponential model within a clinical setting. J Magn Reson Imaging 35(3):660–668CrossRefPubMedGoogle Scholar
  88. 88.
    Rosenkrantz AB, Padhani AR, Chenevert TL, et al. (2015) Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42(5):1190–1202CrossRefPubMedGoogle Scholar
  89. 89.
    Rosenkrantz AB, Sigmund EE, Johnson G, et al. (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264(1):126–135CrossRefPubMedGoogle Scholar
  90. 90.
    Tamura C, Shinmoto H, Soga S, et al. (2014) Diffusion kurtosis imaging study of prostate cancer: preliminary findings. J Magn Reson Imaging 40(3):723–729CrossRefPubMedGoogle Scholar
  91. 91.
    Hambrock T, Vos PC, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ (2013) Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging–effect on observer performance. Radiology 266(2):521–530CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of RadiologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Translational and Molecular Imaging Institute (TMII)Icahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations