Skip to main content

Advertisement

Log in

Correlation of hepatic fractional extracellular space using gadolinium enhanced MRI with liver stiffness using magnetic resonance elastography

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare MR hepatic fractional extracellular space (fECS) to liver stiffness (LS) with magnetic resonance elastography (MRE) for evaluation of liver fibrosis.

Methods and materials

71 consecutive patients with suspected chronic liver disease underwent standard liver MRI with MR elastography and additional delayed Gd-DTPA-enhanced sequences at 5 and 10 min in order to calculate hepatic fECS (%) and LS (kilopascals, kPa). Two radiologists blinded to clinical history examined MR images and calculated fECS and LS in identical locations for every patient. Interobserver agreement was calculated using the intraclass correlation coefficient. Pearson’s correlation was calculated for LS and fECS measures, as was the area under the receiver operatic curve (AUROC), sensitivity and specificity of fECS to predict liver stiffness ≥2.93 and ≥5 kPa. The sensitivity of fECS for detecting fibrosis was separately analyzed in the subgroup of patients without anatomic findings of cirrhosis.

Results

Substantial to excellent interobserver agreement for both LS and fECS measurements was seen with intraclass correlation of 0.88 (95% CI 0.81–0.92) for LS, 0.77 (95% CI 0.66–0.85) for fECS5 and 0.76 (95% CI 0.64–0.84) for fECS10. A significant correlation was found between MRE and fECS5 (r = 0.47, p < 0.0001) and fECS10 (r = 0.44, p < 0.0001). The performance of fECS improved for detection of advanced fibrosis (≥5 kPa) with AUROC, sensitivity and specificity of 0.72, 38%, and 94% for fECS5 and 0.72, 67%, and 66% for fECS10.

Conclusion

fECS correlates modestly with MRE-determined LS. fECS at MRI is a simple calculation to perform and may represent a practical way to suggest the presence of fibrosis during routine liver evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lim YS, Kim WR (2008) The global impact of hepatic fibrosis and end-stage liver disease. Clin Liver Dis 12(4):733–746. doi:10.1016/j.cld.2008.07.007

    Article  PubMed  Google Scholar 

  2. Lee YA, Friedman SL (2014) Reversal, maintenance or progression: what happens to the liver after a virologic cure of hepatitis C? Antivir Res 107:23–30. doi:10.1016/j.antiviral.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  3. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet 371(9615):838–851. doi:10.1016/S0140-6736(08)60383-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bedossa P (2015) Reversibility of hepatitis B virus cirrhosis after therapy: who and why? Liver Int 35(Suppl 1):78–81. doi:10.1111/liv.12710

    Article  PubMed  Google Scholar 

  5. Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: clinical applications. J Comput Assist Tomogr 37(6):887–896. doi:10.1097/RCT.0000000000000032

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rousselet MC, Michalak S, Dupre F, et al. (2005) Sources of variability in histological scoring of chronic viral hepatitis. Hepatology 41(2):257–264. doi:10.1002/hep.20535

    Article  PubMed  Google Scholar 

  7. Venkatesh SK, Yin M, Takahashi N, et al. (2015) Non-invasive detection of liver fibrosis: MR imaging features vs MR elastography. Abdom Imaging 40(4):766–775. doi:10.1007/s00261-015-0347-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50(1):17–35. doi:10.1016/j.jhep.2008.10.016

    Article  PubMed  Google Scholar 

  9. Rustogi R, Horowitz J, Harmath C, et al. (2012) Accuracy of MR elastography and anatomic MR imaging features in the diagnosis of severe hepatic fibrosis and cirrhosis. J Magn Reson Imaging 35(6):1356–1364. doi:10.1002/jmri.23585

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bonekamp D, Bonekamp S, Geiger B, Kamel IR (2012) An elevated arterial enhancement fraction is associated with clinical and imaging indices of liver fibrosis and cirrhosis. J Comput Assist Tomogr 36(6):681–689. doi:10.1097/RCT.0b013e3182702ee3

    Article  PubMed  Google Scholar 

  11. Ou HY, Bonekamp S, Bonekamp D, et al. (2013) MRI arterial enhancement fraction in hepatic fibrosis and cirrhosis. AJR Am J Roentgenol 201(4):W596–W602. doi:10.2214/AJR.12.10048

    Article  PubMed  Google Scholar 

  12. Singh S, Venkatesh SK, Wang Z, et al. (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13(3):440–451. doi:10.1016/j.cgh.2014.09.046

    Article  PubMed  Google Scholar 

  13. Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37(3):544–555. doi:10.1002/jmri.23731

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ichikawa S, Motosugi U, Morisaka H, et al. (2015) Comparison of the diagnostic accuracies of magnetic resonance elastography and transient elastography for hepatic fibrosis. Magn Reson Imaging 33(1):26–30. doi:10.1016/j.mri.2014.10.003

    Article  PubMed  Google Scholar 

  15. Dyvorne HA, Jajamovich GH, Bane O, et al. (2016) Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection. Liver Int 36(5):659–666. doi:10.1111/liv.13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Venkatesh SK, Ehman RL (2014) Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am 22(3):433–446. doi:10.1016/j.mric.2014.05.001

    Article  PubMed  Google Scholar 

  17. Varenika V, Fu Y, Maher JJ, et al. (2013) Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT. Radiology 266(1):151–158. doi:10.1148/radiol.12112452

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zissen MH, Wang ZJ, Yee J, et al. (2013) Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. AJR Am J Roentgenol 201(6):1204–1210. doi:10.2214/AJR.12.10039

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bandula S, Punwani S, Rosenberg WM, et al. (2015) Equilibrium contrast-enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling. Radiology 275(1):136–143. doi:10.1148/radiol.14141435

    Article  PubMed  Google Scholar 

  20. Yoon JH, Lee JM, Klotz E, et al. (2015) Estimation of hepatic extracellular volume fraction using multiphasic liver computed tomography for hepatic fibrosis grading. Invest Radiol 50(4):290–296. doi:10.1097/RLI.0000000000000123

    Article  PubMed  Google Scholar 

  21. Flett AS, Hayward MP, Ashworth MT, et al. (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144. doi:10.1161/CIRCULATIONAHA.109.930636

    Article  PubMed  Google Scholar 

  22. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63. doi:10.1186/1532-429X-14-63

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bandula S, Banypersad SM, Sado D, et al. (2013) Measurement of Tissue interstitial volume in healthy patients and those with amyloidosis with equilibrium contrast-enhanced MR imaging. Radiology 268(3):858–864. doi:10.1148/radiol.13121889

    Article  PubMed  Google Scholar 

  24. Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30(6):1259–1267. doi:10.1002/jmri.21969

    Article  PubMed  PubMed Central  Google Scholar 

  25. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  PubMed  Google Scholar 

  26. Cademartiri F, Mollet NR, van der Lugt A, et al. (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236(2):661–665. doi:10.1148/radiol.2362040468

    Article  PubMed  Google Scholar 

  27. Materne R, Smith AM, Peeters F, et al. (2002) Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med 47(1):135–142

    Article  CAS  PubMed  Google Scholar 

  28. Martini C, Maffei E, Palumbo A, et al. (2010) Impact of contrast material volume on quantitative assessment of reperfused acute myocardial infarction using delayed-enhancement 64-slice CT: experience in a porcine model. La Radiologia medica 115(1):22–35. doi:10.1007/s11547-009-0481-8

    Article  CAS  PubMed  Google Scholar 

  29. Van Beers BE, Leconte I, Materne R, et al. (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol 176(3):667–673. doi:10.2214/ajr.176.3.1760667

    Article  PubMed  Google Scholar 

  30. Klein C, Schmal TR, Nekolla SG, et al. (2007) Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 9(4):653–658. doi:10.1080/10976640601105614

    Article  PubMed  Google Scholar 

  31. Aguirre DA, Behling CA, Alpert E, Hassanein TI, Sirlin CB (2006) Liver fibrosis: noninvasive diagnosis with double contrast material-enhanced MR imaging. Radiology 239(2):425–437. doi:10.1148/radiol.2392050505

    Article  PubMed  Google Scholar 

  32. Martin DR, Lauenstein T, Kalb B, et al. (2012) Liver MRI and histological correlates in chronic liver disease on multiphase gadolinium-enhanced 3D gradient echo imaging. J Magn Reson Imaging 36(2):422–429. doi:10.1002/jmri.23668

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar K. Venkatesh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by our institutional review board.

Informed consent

The requirement for informed consent was waived by our Institutional IRB, due to the retrospective design of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, M.L., Moynagh, M.R., Carter, R.E. et al. Correlation of hepatic fractional extracellular space using gadolinium enhanced MRI with liver stiffness using magnetic resonance elastography. Abdom Radiol 42, 191–198 (2017). https://doi.org/10.1007/s00261-016-0867-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0867-8

Keywords

Navigation