Skip to main content
Log in

Comparison of image quality and patient discomfort in prostate MRI: pelvic phased array coil vs. endorectal coil

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare image quality (IQ) and patient discomfort during prostate MRI using a pelvic phased array (PPA) coil and an endorectal (ER) coil.

Materials and methods

Ninety-eight patients (median age, 65.7; range 42.1–78.1) underwent prostate MRI on a 3T scanner including T2w and DWI acquired with PPA and an ER coil within the same exam. Acquisition time was kept similar for both acquisitions. Two radiologists evaluated aspects of IQ on a 5-point Likert scale and classified image artifacts. All patients completed a questionnaire on discomfort/pain regarding the ER coil using a visual analogue scale from 1 to 10.

Results

There was no significant difference in overall IQ for T2w images for both readers (reader 1, 3.27 ± 0.91 and 3.07 ± 0.84, p = 0.057; reader 2, 3.70 ± 0.75 and 3.77 ± 0.81, p = 0.555) for PPA and ER coils, respectively. Overall IQ for DWI acquired with PPA and ER coils was rated similar by reader 1 (3.03 ± 1.10 and 3.08 ± 0.80, respectively, (p = 0.67)), while reader 2 preferred ER coil images (3.27 ± 0.81 and 3.66 ± 0.85 (p < 0.05)). Susceptibility artifacts were more frequent in ER than in PPA coil images (109 vs. 75). Discomfort and pain experienced during insertion of the ER coil was low altogether (VAS score, 3.5 ± 2.1 for “discomfort” and 2.4 ± 2.4 for “pain”).

Conclusion

T2-weighted images may be acquired with comparable IQ using a PPA coil as compared to an ER coil, while DWI images showed better IQ using the ER coil for one of two readers. The insertion of the ER coil caused low to moderate discomfort and pain in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blomqvist L, Carlsson S, Gjertsson P, et al. (2014) Limited evidence for the use of imaging to detect prostate cancer: a systematic review. Eur J Radiol 83(9):1601–1606. doi:10.1016/j.ejrad.2014.06.028

    Article  CAS  PubMed  Google Scholar 

  2. Johnson LM, Turkbey B, Figg WD, Choyke PL (2014) Multiparametric MRI in prostate cancer management. Nat Rev Clin Oncol 11(6):346–353. doi:10.1038/nrclinonc.2014.69

    Article  PubMed  Google Scholar 

  3. Scheenen TW, Rosenkrantz AB, Haider MA, Futterer JJ (2015) Multiparametric magnetic resonance imaging in prostate cancer management: current status and future perspectives. Invest Radiol 50(9):594–600. doi:10.1097/RLI.0000000000000163

    Article  CAS  PubMed  Google Scholar 

  4. Donati OF, Afaq A, Vargas HA, et al. (2014) Prostate MRI: evaluating tumor volume and apparent diffusion coefficient as surrogate biomarkers for predicting tumor Gleason score. Clin Cancer Res 20(14):3705–3711. doi:10.1158/1078-0432.CCR-14-0044

    Article  PubMed  Google Scholar 

  5. Donati OF, Mazaheri Y, Afaq A, et al. (2014) Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271(1):143–152. doi:10.1148/radiol.13130973

    Article  PubMed  Google Scholar 

  6. Rosenkrantz AB, Shanbhogue AK, Wang A et al. (2015) Length of capsular contact for diagnosing extraprostatic extension on prostate MRI: assessment at an optimal threshold. J Magn Reson Imaging. doi:10.1002/jmri.25040

  7. Rosenkrantz AB, Triolo MJ, Melamed J, et al. (2015) Whole-lesion apparent diffusion coefficient metrics as a marker of percentage Gleason 4 component within Gleason 7 prostate cancer at radical prostatectomy. J Magn Reson Imaging 41(3):708–714. doi:10.1002/jmri.24598

    Article  PubMed  Google Scholar 

  8. Wu CJ, Wang Q, Li H, et al. (2015) DWI-associated entire-tumor histogram analysis for the differentiation of low-grade prostate cancer from intermediate-high-grade prostate cancer. Abdom Imaging 40(8):3214–3221. doi:10.1007/s00261-015-0499-4

    Article  PubMed  Google Scholar 

  9. Sankineni S, George AK, Brown AM, et al. (2015) Posterior subcapsular prostate cancer: identification with mpMRI and MRI/TRUS fusion-guided biopsy. Abdom Imaging 40(7):2557–2565. doi:10.1007/s00261-015-0426-8

    Article  PubMed  Google Scholar 

  10. Hoeks CM, Somford DM, van Oort IM, et al. (2014) Value of 3-T multiparametric magnetic resonance imaging and magnetic resonance-guided biopsy for early risk restratification in active surveillance of low-risk prostate cancer: a prospective multicenter cohort study. Invest Radiol 49(3):165–172. doi:10.1097/RLI.0000000000000008

    Article  PubMed  Google Scholar 

  11. Itatani R, Namimoto T, Atsuji S, et al. (2014) Negative predictive value of multiparametric MRI for prostate cancer detection: outcome of 5-year follow-up in men with negative findings on initial MRI studies. Eur J Radiol 83(10):1740–1745. doi:10.1016/j.ejrad.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  12. Selnaes KM, Heerschap A, Jensen LR, et al. (2012) Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Invest Radiol 47(11):624–633. doi:10.1097/RLI.0b013e318263f0fd

    Article  PubMed  Google Scholar 

  13. Vargas HA, Akin O, Franiel T, et al. (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784. doi:10.1148/radiol.11102066

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barentsz JO, Richenberg J, Clements R, European Society of Urogenital R, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757. doi:10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park BK, Kim B, Kim CK, Lee HM, Kwon GY (2007) Comparison of phased-array 3.0-T and endorectal 1.5-T magnetic resonance imaging in the evaluation of local staging accuracy for prostate cancer. J Comput Assist Tomogr 31(4):534–538. doi:10.1097/01.rct.0000250108.85799.e1

    Article  PubMed  Google Scholar 

  16. Torricelli P, Cinquantini F, Ligabue G, et al. (2006) Comparative evaluation between external phased array coil at 3 T and endorectal coil at 1.5 T: preliminary results. J Comput Assist Tomogr 30(3):355–361

    Article  PubMed  Google Scholar 

  17. Turkbey B, Merino MJ, Gallardo EC, et al. (2014) Comparison of endorectal coil and nonendorectal coil T2 W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging 39(6):1443–1448. doi:10.1002/jmri.24317

    Article  PubMed  Google Scholar 

  18. Heijmink SW, Futterer JJ, Hambrock T, et al. (2007) Prostate cancer: body-array versus endorectal coil MR imaging at 3 T–comparison of image quality, localization, and staging performance. Radiology 244(1):184–195. doi:10.1148/radiol.2441060425

    Article  PubMed  Google Scholar 

  19. Kim BS, Kim TH, Kwon TG, Yoo ES (2012) Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer. Yonsei Med J 53(3):550–556. doi:10.3349/ymj.2012.53.3.550

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee SH, Park KK, Choi KH, et al. (2010) Is endorectal coil necessary for the staging of clinically localized prostate cancer? Comparison of non-endorectal versus endorectal MR imaging. World J Urol 28(6):667–672. doi:10.1007/s00345-010-0579-6

    Article  PubMed  Google Scholar 

  21. Weinreb JC, Barentsz JO, Choyke PL, et al. (2015) PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol. doi:10.1016/j.eururo.2015.08.052

    Google Scholar 

  22. Heverhagen JT (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245(3):638–639. doi:10.1148/radiol.2453062151

    Article  PubMed  Google Scholar 

  23. Kaufman L, Kramer DM, Crooks LE, Ortendahl DA (1989) Measuring signal-to-noise ratios in MR imaging. Radiology 173(1):265–267. doi:10.1148/radiology.173.1.2781018

    Article  CAS  PubMed  Google Scholar 

  24. Futterer JJ, Engelbrecht MR, Jager GJ, et al. (2007) Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol 17(4):1055–1065. doi:10.1007/s00330-006-0418-8

    Article  PubMed  Google Scholar 

  25. Hricak H, White S, Vigneron D, et al. (1994) Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology 193(3):703–709. doi:10.1148/radiology.193.3.7972810

    Article  CAS  PubMed  Google Scholar 

  26. Costa DN, Yuan Q, Xi Y, et al. (2016) Comparison of prostate cancer detection at 3-T MRI with and without an endorectal coil: a prospective, paired-patient study. Urol Oncol 34(6):e255–e257. doi:10.1016/j.urolonc.2016.02.009

    Article  Google Scholar 

  27. Shah ZK, Elias SN, Abaza R, et al. (2015) Performance comparison of 1.5-T endorectal coil MRI with 3.0-T nonendorectal coil MRI in patients with prostate cancer. Acad Radiol 22(4):467–474. doi:10.1016/j.acra.2014.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barth BK, Cornelius A, Nanz D, Eberli D, Donati OF (2015) Diffusion-weighted imaging of the prostate: image quality and geometric distortion of readout-segmented versus selective-excitation accelerated acquisitions. Invest Radiol 50(11):785–791. doi:10.1097/RLI.0000000000000184

    Article  PubMed  Google Scholar 

  29. Mazaheri Y, Vargas HA, Nyman G, et al. (2013) Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement. Eur J Radiol 82(10):e515–e520. doi:10.1016/j.ejrad.2013.04.041

    Article  PubMed  Google Scholar 

  30. Rosen Y, Bloch BN, Lenkinski RE, et al. (2007) 3T MR of the prostate: reducing susceptibility gradients by inflating the endorectal coil with a barium sulfate suspension. Magn Reson Med 57(5):898–904. doi:10.1002/mrm.21166

    Article  CAS  PubMed  Google Scholar 

  31. Mazaheri Y, Afaq AA, Jung SI, et al. (2015) Volume and landmark analysis: comparison of MRI measurements obtained with an endorectal coil and with a phased-array coil. Clin Radiol 70(4):379–386. doi:10.1016/j.crad.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Powell DK, Kodsi KL, Levin G, et al. (2014) Comparison of comfort and image quality with two endorectal coils in MRI of the prostate. J Magn Reson Imaging 39(2):419–426. doi:10.1002/jmri.24179

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivio F. Donati.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, B.K., Cornelius, A., Nanz, D. et al. Comparison of image quality and patient discomfort in prostate MRI: pelvic phased array coil vs. endorectal coil. Abdom Radiol 41, 2218–2226 (2016). https://doi.org/10.1007/s00261-016-0819-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0819-3

Keywords

Navigation