Skip to main content
Log in

Evaluation of the impact of computed high b-value diffusion-weighted imaging on prostate cancer detection

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to compare high b-value (b = 2000 s/mm2) acquired diffusion-weighted imaging (aDWI) with computed DWI (cDWI) obtained using four diffusion models—mono-exponential (ME), intra-voxel incoherent motion (IVIM), stretched exponential (SE), and diffusional kurtosis (DK)—with respect to lesion visibility, conspicuity, contrast, and ability to predict significant prostate cancer (PCa).

Methods

Ninety four patients underwent 3 T MRI including acquisition of b = 2000 s/mm2 aDWI and low b-value DWI. High b = 2000 s/mm2 cDWI was obtained using ME, IVIM, SE, and DK models. All images were scored on quality independently by three radiologists. Lesions were identified on all images and graded for lesion conspicuity. For a subset of lesions for which pathological truth was established, lesion-to-background contrast ratios (LBCRs) were computed and binomial generalized linear mixed model analysis was conducted to compare clinically significant PCa predictive capabilities of all DWI.

Results

For all readers and all models, cDWI demonstrated higher ratings for image quality and lesion conspicuity than aDWI except DK (p < 0.001). The LBCRs of ME, IVIM, and SE were significantly higher than LBCR of aDWI (p < 0.001). Receiver Operating Characteristic curves obtained from binomial generalized linear mixed model analysis demonstrated higher Area Under the Curves for ME, SE, IVIM, and aDWI compared to DK or PSAD alone in predicting significant PCa.

Conclusion

High b-value cDWI using ME, IVIM, and SE diffusion models provide better image quality, lesion conspicuity, and increased LBCR than high b-value aDWI. Using cDWI can potentially provide comparable sensitivity and specificity for detecting significant PCa as high b-value aDWI without increased scan times and image degradation artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. SEER Stat Fact Sheets: Prostate Cancer (2015). National Cancer Institute website. http://seer.cancer.gov/statfacts/html/prost.html

  2. Loch T, Eppelmann U, Lehmann J, et al. (2004) Transrectal ultrasound guided biopsy of the prostate: random sextant versus biopsies of sono-morphologically suspicious lesions. World J Urol 22(5):357–360

    Article  PubMed  Google Scholar 

  3. Ukimura O, Faber K, Gill IS (2012) Intraprostatic targeting. Curr Opin Urol 22(2):97–103. doi:10.1097/MOU.0b013e32835017fa

    Article  PubMed  Google Scholar 

  4. Barentsz JO, Richenberg J, Clements R, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757. doi:10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Verma S, Rajesh A (2011) A clinically relevant approach to imaging prostate cancer: review. Am J Roentgenol 196(3 Suppl):S1–S10 (Quiz S11-4). doi:10.2214/AJR.09.7196

    Article  Google Scholar 

  6. Marks L, Young S (2013) MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr Opin Urol 23(1):43–50. doi:10.1097/MOU.0b013e32835ad3ee

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mouraviev V, Verma S, Kalyanaraman B, et al. (2013) The feasibility of multiparametric magnetic resonance imaging for targeted biopsy using novel navigation systems to detect early stage prostate cancer: the preliminary experience. J Endourol 27(7):820–825. doi:10.1089/end.2012.0215

    Article  PubMed  Google Scholar 

  8. Moore CM, Robertson NL, Arsanious N, et al. (2013) Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 63(1):125–140. doi:10.1016/j.eururo.2012.06.004

    Article  PubMed  Google Scholar 

  9. Bhavsar A, Verma S (2014) Anatomic Imaging of the Prostate. Biomed Res Int. 2014:728539. doi:10.1155/2014/728539

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prostate Imaging Reporting and Data System: Version 2 (2015). American College of Radiology website. http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/PIRADS/PIRADS%20V2.pdf

  11. Chatterjee A, Watson G, Myint E, et al. (2015) Changes in epithelium, stroma, and lumen space correlate more strongly with gleason pattern and are stronger predictors of prostate ADC changes than cellularity metrics. Radiology 277(3):751–762. doi:10.1148/radiol.2015142414

    Article  PubMed  Google Scholar 

  12. Rosenkrantz AB, Hindman N, Lim RP, et al. (2013) Diffusion-weighted imaging of the prostate: comparison of b1000 and b2000 image sets for index lesion detection. J Magn Reson Imaging . doi:10.1002/jmri.24016

    Google Scholar 

  13. Ben-Amitay S, Jones DK, Assaf Y (2012) Motion correction and registration of high b-value diffusion weighted images. Magn Reson Med 67:1694–1702

    Article  PubMed  Google Scholar 

  14. Blackledge MD, Leach MO, Collins DJ, Koh DM (2011) Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 261(2):573–581. doi:10.1148/radiol.11101919

    Article  PubMed  Google Scholar 

  15. Bittencourt LK, Attenberger UI, Lima D, et al. (2014) Feasibility study of computed vs. measured high b-value (1400 s/mm2) diffusion-weighted MR images of the prostate. World J Radiol 6(6):374–380. doi:10.4329/wjr.v6.i6.374

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maas MC, Futterer JJ, Scheenen TW (2013) Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Investig Radiol 48(11):779–786. doi:10.1097/RLI.0b013e31829705bb

    Article  Google Scholar 

  17. Rosenkrantz AB, Chandarana H, Hindman N, et al. (2013) Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol 23:3170–3177. doi:10.1007/s00330-013-2917-8

    Article  PubMed  Google Scholar 

  18. Quentin M, Blondin D, Klasen J, et al. (2012) Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn Reson Imaging. 30(10):1468–1474. doi:10.1016/j.mri.2012.04.025

    Article  PubMed  Google Scholar 

  19. Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505

    Article  PubMed  Google Scholar 

  20. Mazaheri Y, Afaq A, Rowe DB, Lu Y, et al. (2012) Diffusion-weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling. J Comput Assist Tomogr 36(6):695–703. doi:10.1097/RCT.0b013e31826bdbbd

    Article  PubMed  Google Scholar 

  21. Rosenkrantz AB, Sigmund EE, Johnson G, et al. (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264(1):126–135. doi:10.1148/radiol.12112290

    Article  PubMed  Google Scholar 

  22. Natarajan S, Marks LS, Margolis DJ, et al. (2011) Clinical application of a 3D ultrasound-guided prostate biopsy system. Urol Oncol 29(3):334–342. doi:10.1016/j.urolonc.2011.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bourne RM, Panagiotaki E, Bongers A, et al. (2014) Information theoretic ranking of four models of diffusion attenuation in fresh and fixed prostate tissue ex vivo. Magn Reson Med. 72(5):1418–1426. doi:10.1002/mrm.25032

    Article  PubMed  Google Scholar 

  24. Jambor I, Merisaari H, Taimen P, et al. (2015) Evaluation of different mathematical models for diffusion-weighted imaging of normal prostate and prostate cancer using high b-values: a repeatability study. Magn Reson Med. 73(5):1988–1998. doi:10.1002/mrm.25323

    Article  PubMed  Google Scholar 

  25. Metens T, Miranda D, Absil J, Matos C (2012) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol 22(3):703–709. doi:10.1007/s00330-011-2298-9

    Article  CAS  PubMed  Google Scholar 

  26. Ohgiya Y, Suyama J, Seino N, et al. (2012) Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer. Clin Imaging 36(5):526–531. doi:10.1016/j.clinimag.2011.11.016

    Article  PubMed  Google Scholar 

  27. Ueno Y, Takahashi S, Kitajima K, et al. (2013) Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radiol 23(12):3509–3516. doi:10.1007/s00330-013-2958-z

    Article  PubMed  Google Scholar 

  28. Grant KB, Agarwal HK, Shih JH, et al. (2015) Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging 40:578–586. doi:10.1007/s00261-014-0246-2

    Article  PubMed  Google Scholar 

  29. Liu X, Zhou L, Peng W, Wang H, Zhang Y (2015) Comparison of stretched-Exponential and monoexponential model diffusion-Weighted imaging in prostate cancer and normal tissues. J Magn Reson Imaging . doi:10.1002/jmri.24872

    Google Scholar 

  30. Boesen L, Chabanova E, Løgager V, et al. (2015) Apparent diffusion coefficient ratio correlates significantly with prostate cancer gleason score at final pathology. J Magn Reson Imaging. 42(2):446–453. doi:10.1002/jmri.24801

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhna Verma.

Ethics declarations

Conflict of Interest

The authors Sadhna Verma, Jason Young, Anil Bhavsar, Nilesh Patil, James Donovan, and Krishnanath Gaitonde declare that they have no conflict of interest. The authors Saradwata Sarkar, Rajesh Venkataraman, and Xu Yang are employed at Eigen, Grass Valley, CA.

Additional information

Sadhna Verma and Saradwata Sarkar are first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Sarkar, S., Young, J. et al. Evaluation of the impact of computed high b-value diffusion-weighted imaging on prostate cancer detection. Abdom Radiol 41, 934–945 (2016). https://doi.org/10.1007/s00261-015-0619-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0619-1

Keywords

Navigation