Skip to main content

Advertisement

Log in

Practical aspects of prostate MRI: hardware and software considerations, protocols, and patient preparation

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

The use of multiparametric MRI scans for the evaluation of men with prostate cancer has increased dramatically and is likely to continue expanding as new developments come to practice. However, it has not yet gained the same level of acceptance of other imaging tests. Partly, this is because of the use of suboptimal protocols, lack of standardization, and inadequate patient preparation. In this manuscript, we describe several practical aspects of prostate MRI that may facilitate the implementation of new prostate imaging programs or the expansion of existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barentsz JO, Richenberg J, Clements R, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757. doi:10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dickinson L, Ahmed HU, Allen C, et al. (2013) Scoring systems used for the interpretation and reporting of multiparametric MRI for prostate cancer detection, localization, and characterization: could standardization lead to improved utilization of imaging within the diagnostic pathway? J Magn Reson Imaging 37(1):48–58. doi:10.1002/jmri.23689

    Article  PubMed  Google Scholar 

  3. ACR (2015) MR Prostate Imaging Reporting and Data System version 2.0. American College of Radiology. http://www.acr.org/Quality-Safety/Resources/PIRADS/. Accessed 16 April 2015

  4. Fenner A (2013) Prostate cancer: multiparametric MRI scans could be a useful adjunct for active surveillance in prostate cancer. Nat Rev Urol 10(5):247. doi:10.1038/nrurol.2013.56

    Article  PubMed  Google Scholar 

  5. Hoeks CM, Barentsz JO, Hambrock T, et al. (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66. doi:10.1148/radiol.11091822

    Article  PubMed  Google Scholar 

  6. Johnson LM, Turkbey B, Figg WD, Choyke PL (2014) Multiparametric MRI in prostate cancer management. Nat Rev Clin Oncol 11(6):346–353. doi:10.1038/nrclinonc.2014.69

    Article  PubMed  Google Scholar 

  7. Kurhanewicz J, Vigneron D, Carroll P, Coakley F (2008) Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol 18(1):71–77. doi:10.1097/MOU.0b013e3282f19d01

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sandler K, Patel M, Lynne C, et al. (2015) Multiparametric-MRI and targeted biopsies in the management of prostate cancer patients on active surveillance. Frontiers in Oncology 5:4. doi:10.3389/fonc.2015.00004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rouviere O (2012) Imaging techniques for local recurrence of prostate cancer: for whom, why and how? Diagn Interv Imaging 93(4):279–290. doi:10.1016/j.diii.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  10. Kim CK, Park BK, Lee HM (2009) Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging 29(2):391–397. doi:10.1002/jmri.21645

    Article  PubMed  Google Scholar 

  11. Westphalen AC, Reed GD, Vinh PP, et al. (2012) Multiparametric 3T endorectal mri after external beam radiation therapy for prostate cancer. J Magn Reson Imaging 36(2):430–437. doi:10.1002/jmri.23672

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bubley GJ, Bloch BN, Vazquez C, et al. (2013) Accuracy of endorectal magnetic resonance/transrectal ultrasound fusion for detection of prostate cancer during brachytherapy. Urology 81(6):1284–1289. doi:10.1016/j.urology.2012.12.051

    Article  PubMed  Google Scholar 

  13. Barrett T, Gill AB, Kataoka MY, et al. (2012) DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: a feasibility study. Magn Reson Med 67(3):778–785. doi:10.1002/mrm.23062

    Article  CAS  PubMed  Google Scholar 

  14. Chen M, Hricak H, Kalbhen CL, et al. (1996) Hormonal ablation of prostatic cancer: effects on prostate morphology, tumor detection, and staging by endorectal coil MR imaging. Am J Roentgenol 166(5):1157–1163. doi:10.2214/ajr.166.5.8615261

    Article  CAS  Google Scholar 

  15. Miralbell R, Vees H, Lozano J, et al. (2007) Endorectal MRI assessment of local relapse after surgery for prostate cancer: a model to define treatment field guidelines for adjuvant radiotherapy in patients at high risk for local failure. Int J Radiat Oncol Biol Phys 67(2):356–361. doi:10.1016/j.ijrobp.2006.08.079

    Article  PubMed  Google Scholar 

  16. Pucar D, Sella T, Schoder H (2008) The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol 18(1):87–97. doi:10.1097/MOU.0b013e3282f13ac3

    Article  PubMed  Google Scholar 

  17. Charnley N, Morgan A, Thomas E, et al. (2005) The use of CT-MR image registration to define target volumes in pelvic radiotherapy in the presence of bilateral hip replacements. Br J Radiol 78(931):634–636. doi:10.1259/bjr/28412864

    Article  CAS  PubMed  Google Scholar 

  18. Rosewall T, Kong V, Vesprini D, et al. (2009) Prostate delineation using CT and MRI for radiotherapy patients with bilateral hip prostheses. Radiother Oncol 90(3):325–330. doi:10.1016/j.radonc.2008.11.015

    Article  PubMed  Google Scholar 

  19. Rudisch A, Kremser C, Peer S, et al. (1998) Metallic artifacts in magnetic resonance imaging of patients with spinal fusion. A comparison of implant materials and imaging sequences. Spine 23(6):692–699

    Article  CAS  PubMed  Google Scholar 

  20. Panfili E, Pierdicca L, Salvolini L, et al. (2014) Magnetic resonance imaging (MRI) artefacts in hip prostheses: a comparison of different prosthetic compositions. Radiol Med 119(2):113–120. doi:10.1007/s11547-013-0315-6

    Article  PubMed  Google Scholar 

  21. Delongchamps NB, Beuvon F, Eiss D, et al. (2011) Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer. Prostate Cancer Prostatic Dis 14(3):232–237. doi:10.1038/pcan.2011.9

    Article  CAS  PubMed  Google Scholar 

  22. Delongchamps NB, Rouanne M, Flam T, et al. (2011) Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 107(9):1411–1418. doi:10.1111/j.1464-410X.2010.09808.x

    Article  PubMed  Google Scholar 

  23. Franiel T, Stephan C, Erbersdobler A, et al. (2011) Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding–multiparametric MR imaging for detection and biopsy planning. Radiology 259(1):162–172. doi:10.1148/radiol.10101251

    Article  PubMed  Google Scholar 

  24. Futterer JJ, Heijmink SW, Scheenen TW, et al. (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241(2):449–458

    Article  PubMed  Google Scholar 

  25. Haider MA, van der Kwast TH, Tanguay J, et al. (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. Am J Roentgenol 189(2):323–328. doi:10.2214/AJR.07.2211

    Article  Google Scholar 

  26. Langer DL, van der Kwast TH, Evans AJ, et al. (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255(2):485–494. doi:10.1148/radiol.10091343

    Article  PubMed  Google Scholar 

  27. Langer DL, van der Kwast TH, Evans AJ, et al. (2009) Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30(2):327–334. doi:10.1002/jmri.21824

    Article  PubMed  Google Scholar 

  28. Mazaheri Y, Hricak H, Fine SW, et al. (2009) Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 252(2):449–457. doi:10.1148/radiol.2523081423

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weinreb JC, Blume JD, Coakley FV, et al. (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251(1):122–133. doi:10.1148/radiol.2511080409

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243(1):28–53. doi:10.1148/radiol.2431030580

    Article  PubMed  Google Scholar 

  31. Noworolski SM, Crane JC, Vigneron DB, Kurhanewicz J (2008) A clinical comparison of rigid and inflatable endorectal-coil probes for MRI and 3D MR spectroscopic imaging (MRSI) of the prostate. J Magn Reson Imaging 27(5):1077–1082. doi:10.1002/jmri.21331

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eilenberg SS, Tartar VM, Mattrey RF (1994) Reducing magnetic susceptibility differences using liquid fluorocarbon pads (Sat Pad): results with spectral presaturation of fat. Artif Cells Blood Substit Immobil Biotechnol 22(4):1477–1483

    Article  CAS  PubMed  Google Scholar 

  33. Rosen Y, Bloch BN, Lenkinski RE, et al. (2007) 3T MR of the prostate: reducing susceptibility gradients by inflating the endorectal coil with a barium sulfate suspension. Magn Reson Med 57(5):898–904. doi:10.1002/mrm.21166

    Article  CAS  PubMed  Google Scholar 

  34. Noworolski SM, Reed GD, Kurhanewicz J, Vigneron DB (2010) Post-processing correction of the endorectal coil reception effects in MR spectroscopic imaging of the prostate. J Magn Reson Imaging 32(3):654–662. doi:10.1002/jmri.22258

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bloch BN, Rofsky NM, Baroni RH, et al. (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils: initial experience(1). Acad Radiol 11(8):863–867. doi:10.1016/j.acra.2004.04.017

    PubMed  Google Scholar 

  36. Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28(7):1983–1998. doi:10.1148/rg.287075154

    Article  PubMed  Google Scholar 

  37. Park BK, Kim B, Kim CK, Lee HM, Kwon GY (2007) Comparison of Phased-Array 3.0-T and Endorectal 1.5-T magnetic resonance imaging in the evaluation of local staging accuracy for prostate cancer. J Comput Assist Tomogr 31(4):534–538

    Article  PubMed  Google Scholar 

  38. Shah ZK, Elias SN, Abaza R, et al. (2015) Performance comparison of 1.5-T endorectal coil MRI with 3.0-T nonendorectal coil MRI in patients with prostate cancer. Acad Radiol 22(4):467–474. doi:10.1016/j.acra.2014.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sosna J, Pedrosa I, Dewolf WC, et al. (2004) MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 11(8):857–862

    Article  PubMed  Google Scholar 

  40. Turkbey B, Merino MJ, Gallardo EC, et al. (2014) Comparison of endorectal coil and nonendorectal coil T2 W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging 39(6):1443–1448. doi:10.1002/jmri.24317

    Article  PubMed  PubMed Central  Google Scholar 

  41. Litjens GJ, Barentsz JO, Karssemeijer N, Huisman HJ (2015) Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in prostate MRI. Eur Radiol . doi:10.1007/s00330-015-3743-y

    PubMed  PubMed Central  Google Scholar 

  42. Silveira PC, Dunne R, Sainani NI, et al. (2015) Impact of an information technology-enabled initiative on the quality of prostate multiparametric MRI reports. Acad Radiol 22(7):827–833. doi:10.1016/j.acra.2015.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hambrock T, Vos PC, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ (2013) Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging–effect on observer performance. Radiology 266(2):521–530. doi:10.1148/radiol.12111634

    Article  PubMed  Google Scholar 

  44. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397. doi:10.1001/jama.2014.17942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vargas C, Saito AI, Hsi WC, et al. (2010) Cine-magnetic resonance imaging assessment of intrafraction motion for prostate cancer patients supine or prone with and without a rectal balloon. Am J Clin Oncol 33(1):11–16. doi:10.1097/COC.0b013e31819fdf7c

    Article  PubMed  Google Scholar 

  46. Wilder RB, Chittenden L, Mesa AV, et al. (2010) A prospective study of intrafraction prostate motion in the prone vs. supine position. Int J Radiat Oncol Biol Phys 77(1):165–170. doi:10.1016/j.ijrobp.2009.04.041

    Article  PubMed  Google Scholar 

  47. Pasoglou V, Michoux N, Peeters F, et al. (2015) Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology 275(1):155–166. doi:10.1148/radiol.14141242

    Article  PubMed  Google Scholar 

  48. Pano B, Sebastia C, Bunesch L, et al. (2011) Pathways of lymphatic spread in male urogenital pelvic malignancies. Radiographics 31(1):135–160. doi:10.1148/rg.311105072

    Article  PubMed  Google Scholar 

  49. Qayyum A, Coakley FV, Lu Y, et al. (2004) Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. Am J Roentgenol 183(4):1079–1083. doi:10.2214/ajr.183.4.1831079

    Article  Google Scholar 

  50. Sharif-Afshar AR, Feng T, Koopman S, et al. (2015) Impact of post prostate biopsy hemorrhage on multiparametric magnetic resonance imaging. Can J Urol 22(2):7698–7702

    PubMed  Google Scholar 

  51. Sala E, Akin O, Moskowitz CS, et al. (2006) Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology 238(3):929–937. doi:10.1148/radiol.2383050657

    Article  PubMed  Google Scholar 

  52. Tempany CM, Rahmouni AD, Epstein JI, Walsh PC, Zerhouni EA (1991) Invasion of the neurovascular bundle by prostate cancer: evaluation with MR imaging. Radiology 181(1):107–112

    Article  CAS  PubMed  Google Scholar 

  53. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM (2015) Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol . doi:10.1016/j.eururo.2015.07.029

    Google Scholar 

  54. Schiebler ML, Schnall MD, Pollack HM, et al. (1993) Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology 189(2):339–352. doi:10.1148/radiology.189.2.8210358

    Article  CAS  PubMed  Google Scholar 

  55. Rosenkrantz AB, Neil J, Kong X, et al. (2010) Prostate cancer: comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. Am J Roentgenol 194(2):446–452. doi:10.2214/AJR.09.3217

    Article  Google Scholar 

  56. Westphalen AC, Noworolski S, Sen S et al (2015) Kurhanewicz J High resolution 3-Tesla endorectal prostate MR Imaging: a multireader study of radiologist preference and perceived interpretive quality of 2D and 3D T2-weighted FSE MR images (abstract #15001483). In: RSNA 101st Scientific Assembly and Annual Meeting, Chicago, Nov 28 to Dec 4, 2015. Radiological Society of North America

  57. Desouza NM, Reinsberg SA, Scurr ED, Brewster JM, Payne GS (2007) Magnetic resonance imaging in prostate cancer: the value of apparent diffusion coefficients for identifying malignant nodules. Br J Radiol 80(950):90–95. doi:10.1259/bjr/24232319

    Article  CAS  PubMed  Google Scholar 

  58. Gibbs P, Pickles MD, Turnbull LW (2006) Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol 41(2):185–188

    Article  PubMed  Google Scholar 

  59. Kim CK, Park BK, Lee HM, Kwon GY (2007) Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol 42(12):842–847. doi:10.1097/RLI.0b013e3181461d21

    Article  PubMed  Google Scholar 

  60. Turkbey B, Pinto PA, Choyke PL (2009) Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 6(4):191–203. doi:10.1038/nrurol.2009.27

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vargas HA, Akin O, Franiel T, et al. (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784. doi:10.1148/radiol.11102066

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nagarajan R, Margolis D, Raman S, et al. (2012) Correlation of Gleason scores with diffusion-weighted imaging findings of prostate cancer. Adv Urol 2012:374805. doi:10.1155/2012/374805

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pang Y, Turkbey B, Bernardo M, et al. (2013) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 69(2):553–562. doi:10.1002/mrm.24277

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang XZ, Wang B, Gao ZQ, et al. (2009) Diffusion-weighted imaging of prostate cancer: correlation between apparent diffusion coefficient values and tumor proliferation. J Magn Reson Imaging 29(6):1360–1366. doi:10.1002/jmri.21797

    Article  PubMed  Google Scholar 

  65. Katahira K, Takahara T, Kwee TC, et al. (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21(1):188–196. doi:10.1007/s00330-010-1883-7

    Article  PubMed  Google Scholar 

  66. Rosenkrantz AB, Sabach A, Babb JS, et al. (2013) Prostate cancer: comparison of dynamic contrast-enhanced MRI techniques for localization of peripheral zone tumor. Am J Roentgenol 201(3):W471–478. doi:10.2214/AJR.12.9737

    Article  Google Scholar 

  67. Ueno Y, Takahashi S, Kitajima K, et al. (2013) Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radiol 23(12):3509–3516. doi:10.1007/s00330-013-2958-z

    Article  PubMed  Google Scholar 

  68. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32(1):2–16. doi:10.1002/jmri.22167

    Article  PubMed  PubMed Central  Google Scholar 

  69. Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14(6):409–413

    Article  CAS  PubMed  Google Scholar 

  70. Rickards D (1992) Transrectal ultrasound 1992. Br J Urol 69(5):449–455

    Article  CAS  PubMed  Google Scholar 

  71. Mazaheri Y, Vargas HA, Nyman G, et al. (2013) Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement. Eur J Radiol 82(10):e515–520. doi:10.1016/j.ejrad.2013.04.041

    Article  PubMed  Google Scholar 

  72. Metens T, Miranda D, Absil J, Matos C (2012) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol 22(3):703–709. doi:10.1007/s00330-011-2298-9

    Article  CAS  PubMed  Google Scholar 

  73. Korn N, Kurhanewicz J, Banerjee S, et al. (2015) Reduced-FOV excitation decreases susceptibility artifact in diffusion-weighted MRI with endorectal coil for prostate cancer detection. Magn Reson Imaging 33(1):56–62. doi:10.1016/j.mri.2014.08.040

    Article  PubMed  PubMed Central  Google Scholar 

  74. Quentin M, Pentang G, Schimmoller L, et al. (2014) Feasibility of diffusional kurtosis tensor imaging in prostate MRI for the assessment of prostate cancer: preliminary results. Magn Reson Imaging 32(7):880–885. doi:10.1016/j.mri.2014.04.005

    Article  PubMed  Google Scholar 

  75. Donati OF, Mazaheri Y, Afaq A, et al. (2014) Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271(1):143–152. doi:10.1148/radiol.13130973

    Article  PubMed  Google Scholar 

  76. Noworolski SM, Henry RG, Vigneron DB, Kurhanewicz J (2005) Dynamic contrast-enhanced MRI in normal and abnormal prostate tissues as defined by biopsy, MRI, and 3D MRSI. Magn Reson Med 53(2):249–255. doi:10.1002/mrm.20374

    Article  CAS  PubMed  Google Scholar 

  77. Noworolski SM, Reed GD, Kurhanewicz J (2011) A novel luminal water model for DCE MRI of prostatic tissues. Paper presented at the proceedings of International Society Magnus Reason Medicine, 19 Montreal

  78. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. doi:10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  79. Ferrer FA, Miller LJ, Andrawis RI, et al. (1997) Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 157(6):2329–2333

    Article  CAS  PubMed  Google Scholar 

  80. Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM (2001) Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res 61(6):2736–2743

    CAS  PubMed  Google Scholar 

  81. Latil A, Bieche I, Pesche S, et al. (2000) VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 89(2):167–171

    Article  CAS  PubMed  Google Scholar 

  82. Russo G, Mischi M, Scheepens W, De la Rosette JJ, Wijkstra H (2012) Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 110 (11 Pt C):E794-808. doi:10.1111/j.1464-410X.2012.11444.x

  83. Bigler SA, Deering RE, Brawer MK (1993) Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol 24(2):220–226

    Article  CAS  PubMed  Google Scholar 

  84. McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62(18):5381–5385

    CAS  PubMed  Google Scholar 

  85. Sottnik JL, Zhang J, Macoska JA, Keller ET (2011) The PCa tumor microenvironment. Cancer Microenviron 4(3):283–297. doi:10.1007/s12307-011-0073-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Isebaert S, Van den Bergh L, Haustermans K, et al. (2013) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 37(6):1392–1401. doi:10.1002/jmri.23938

    Article  PubMed  Google Scholar 

  87. Ito H, Kamoi K, Yokoyama K, Yamada K, Nishimura T (2003) Visualization of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br J Radiol 76(909):617–624. doi:10.1259/bjr/52526261

    Article  CAS  PubMed  Google Scholar 

  88. Jackson AS, Reinsberg SA, Sohaib SA, et al. (2009) Dynamic contrast-enhanced MRI for prostate cancer localization. Br J Radiol 82(974):148–156. doi:10.1259/bjr/89518905

    Article  CAS  PubMed  Google Scholar 

  89. Kim JK, Hong SS, Choi YJ, et al. (2005) Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging 22(5):639–646. doi:10.1002/jmri.20431

    Article  CAS  PubMed  Google Scholar 

  90. Ocak I, Bernardo M, Metzger G, et al. (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol 189(4):849. doi:10.2214/AJR.06.1329

    Article  Google Scholar 

  91. Chen YJ, Chu WC, Pu YS, et al. (2012) Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging 36(4):912–919. doi:10.1002/jmri.23723

    Article  PubMed  Google Scholar 

  92. Vos EK, Litjens GJ, Kobus T, et al. (2013) Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T. Eur Urol 64(3):448–455. doi:10.1016/j.eururo.2013.05.045

    Article  PubMed  Google Scholar 

  93. Rosenkrantz AB, Taneja SS (2014) Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. Am J Roentgenol 202(1):109–120. doi:10.2214/AJR.13.10699

    Article  Google Scholar 

  94. Akin O, Sala E, Moskowitz CS, et al. (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239(3):784–792

    Article  PubMed  Google Scholar 

  95. Hoeks CM, Hambrock T, Yakar D, et al. (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266(1):207–217. doi:10.1148/radiol.12120281

    Article  PubMed  Google Scholar 

  96. Kershaw LE, Buckley DL (2006) Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 56(5):986–992. doi:10.1002/mrm.21040

    Article  PubMed  Google Scholar 

  97. Fennessy FM, Fedorov A, Penzkofer T, et al. (2015) Quantitative pharmacokinetic analysis of prostate cancer DCE-MRI at 3T: comparison of two arterial input functions on cancer detection with digitized whole mount histopathological validation. Magn Reson Imaging 33(7):886–894. doi:10.1016/j.mri.2015.02.008

    Article  PubMed  Google Scholar 

  98. Perdona S, Di Lorenzo G, Autorino R, et al. (2013) Combined magnetic resonance spectroscopy and dynamic contrast-enhanced imaging for prostate cancer detection. Urol Oncol 31(6):761–765. doi:10.1016/j.urolonc.2011.07.010

    Article  PubMed  Google Scholar 

  99. Quon J, Kielar AZ, Jain R, Schieda N (2015) Assessing the utilization of functional imaging in multiparametric prostate MRI in routine clinical practice. Clin Radiol 70(4):373–378. doi:10.1016/j.crad.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  100. Turkbey B, Mani H, Aras O, et al. (2013) Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology 268(1):144–152. doi:10.1148/radiol.13121325

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang X, Quan X, Lu S, et al. (2014) The clinical value of dynamic contrast-enhanced magnetic resonance imaging at 3.0T to detect prostate cancer. J Int Med Res 42(5):1077–1084. doi:10.1177/0300060514541827

    Article  PubMed  Google Scholar 

  102. Rosenkrantz AB, Geppert C, Grimm R, et al. (2015) Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: preliminary experience. J Magn Reson Imaging 41(5):1365–1373. doi:10.1002/jmri.24661

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fennessy FM, McKay RR, Beard CJ, Taplin ME, Tempany CM (2014) Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical trials: potential roles and possible pitfalls. Transl Oncol 7(1):120–129

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rosenkrantz AB, Chandarana H, Hindman N, et al. (2013) Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol 23(11):3170–3177. doi:10.1007/s00330-013-2917-8

    Article  PubMed  Google Scholar 

  105. Verma S, Turkbey B, Muradyan N, et al. (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am J Roentgenol 198(6):1277–1288. doi:10.2214/AJR.12.8510

    Article  Google Scholar 

  106. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63(3):335–350. doi:10.1016/j.ejrad.2007.06.028

    Article  PubMed  Google Scholar 

  107. Girouin N, Mege-Lechevallier F, Tonina Senes A, et al. (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17(6):1498–1509. doi:10.1007/s00330-006-0478-9

    Article  PubMed  Google Scholar 

  108. Hansford BG, Peng Y, Jiang Y, et al. (2015) Dynamic Contrast-enhanced MR Imaging Curve-type Analysis: Is It Helpful in the Differentiation of Prostate Cancer from Healthy Peripheral Zone? Radiology 275(2):448–457. doi:10.1148/radiol.14140847

    Article  PubMed  Google Scholar 

  109. Ogura K, Maekawa S, Okubo K, et al. (2001) Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology 57(4):721–726. doi:10.1016/S0090-4295(00)01072-4

    Article  CAS  PubMed  Google Scholar 

  110. Pallares J, Rojo F, Iriarte J, et al. (2006) Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol 21(8):857–865

    CAS  PubMed  Google Scholar 

  111. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143(2):401–409

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Isebaert S, De Keyzer F, Haustermans K, et al. (2012) Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol 81(3):e217–222. doi:10.1016/j.ejrad.2011.01.107

    Article  PubMed  Google Scholar 

  113. Oto A, Yang C, Kayhan A, et al. (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. Am J Roentgenol 197(6):1382–1390. doi:10.2214/AJR.11.6861

    Article  Google Scholar 

  114. Peng Y, Jiang Y, Yang C, et al. (2013) Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score–a computer-aided diagnosis development study. Radiology 267(3):787–796. doi:10.1148/radiol.13121454

    Article  PubMed  Google Scholar 

  115. Hegde JV, Mulkern RV, Panych LP, et al. (2013) Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37(5):1035–1054. doi:10.1002/jmri.23860

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66(3):735–745. doi:10.1002/mrm.22861

    Article  PubMed  Google Scholar 

  117. Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26(8):1004–1027. doi:10.1002/nbm.2940

    Article  PubMed  Google Scholar 

  118. Tofts PS, Brix G, Buckley DL, et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232

    Article  CAS  PubMed  Google Scholar 

  119. Fennessy FM, Fedorov A, Gupta SN, et al. (2012) Practical considerations in T1 mapping of prostate for dynamic contrast enhancement pharmacokinetic analyses. Magn Reson Imaging 30(9):1224–1233. doi:10.1016/j.mri.2012.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fedorov A, Fluckiger J, Ayers GD, et al. (2014) A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: a step towards practical implementation. Magn Reson Imaging 32(4):321–329. doi:10.1016/j.mri.2014.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  121. Port RE, Knopp MV, Brix G (2001) Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn Reson Med 45(6):1030–1038

    Article  CAS  PubMed  Google Scholar 

  122. Sanz-Requena R, Prats-Montalban JM, Marti-Bonmati L, et al. (2015) Automatic individual arterial input functions calculated from PCA outperform manual and population-averaged approaches for the pharmacokinetic modeling of DCE-MR images. J Magn Reson Imaging 42(2):477–487. doi:10.1002/jmri.24805

    Article  PubMed  Google Scholar 

  123. Ortuno JE, Ledesma-Carbayo MJ, Simoes RV, et al. (2013) DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinform 14:316. doi:10.1186/1471-2105-14-316

    Article  Google Scholar 

  124. Schmid VJ, Whitcher B, Padhani AR, Taylor NJ, Yang GZ (2006) Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging. IEEE Trans Med Imaging 25(12):1627–1636

    Article  PubMed  Google Scholar 

  125. Schmid VJ, Whitcher B, Padhani AR, Taylor NJ, Yang GZ (2009) A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study. Magn Reson Med 61(1):163–174. doi:10.1002/mrm.21807

    Article  PubMed  Google Scholar 

  126. Smith DS, Li X, Arlinghaus LR, Yankeelov TE, Welch EB (2015) DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis. PeerJ 3:e909. doi:10.7717/peerj.909

  127. Zollner FG, Weisser G, Reich M, et al. (2013) UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine. J Digital Imaging 26(2):344–352. doi:10.1007/s10278-012-9510-6

    Article  Google Scholar 

  128. Kurhanewicz J, Vigneron DB, Hricak H, et al. (1996) Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200(2):489–496

    Article  CAS  PubMed  Google Scholar 

  129. Shukla-Dave A, Hricak H, Moskowitz C, et al. (2007) Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology 245(2):499–506. doi:10.1148/radiol.2452062201

    Article  PubMed  Google Scholar 

  130. Costello LC, Franklin RB (1991) Concepts of citrate production and secretion by prostate. 1. Metabolic relationships. Prostate 18(1):25–46

    Article  CAS  PubMed  Google Scholar 

  131. Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35(4):285–296

    Article  CAS  PubMed  Google Scholar 

  132. Kaji Y, Kurhanewicz J, Hricak H, et al. (1998) Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging. Radiology 206(3):785–790

    Article  CAS  PubMed  Google Scholar 

  133. Kurhanewicz J, Vigneron DB (2008) Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin N Am 16(4):697–710, ix–x. doi:10.1016/j.mric.2008.07.005

  134. Kurhanewicz J, Vigneron DB, Hricak H, et al. (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198(3):795–805

    Article  CAS  PubMed  Google Scholar 

  135. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61(9):3599–3603

    CAS  PubMed  Google Scholar 

  136. Hricak H (2005) MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br J Radiol 78 Spec No 2:S103–111. doi:10.1259/bjr/11253478

  137. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12(7):413–439

    Article  CAS  PubMed  Google Scholar 

  138. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16(4):451–463

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ganie FA, Wani MS, Shaheen F, et al. (2013) Endorectal coil MRI and MR-spectroscopic imaging in patients with elevated serum prostate specific antigen with negative trus transrectal ultrasound guided biopsy. Urology annals 5(3):172–178. doi:10.4103/0974-7796.115741

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kobus T, Wright AJ, Scheenen TW, Heerschap A (2014) Mapping of prostate cancer by 1H MRSI. NMR Biomed 27(1):39–52. doi:10.1002/nbm.2973

    Article  CAS  PubMed  Google Scholar 

  141. Cunningham CH, Vigneron DB, Chen AP, et al. (2005) Design of flyback echo-planar readout gradients for magnetic resonance spectroscopic imaging. Magn Reson Med 54(5):1286–1289. doi:10.1002/mrm.20663

    Article  PubMed  Google Scholar 

  142. Lagemaat MW, Breukels V, Vos EK, et al. (2015) H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses. Magn Reson Med . doi:10.1002/mrm.25569

    Google Scholar 

  143. Tran TK, Vigneron DB, Sailasuta N, et al. (2000) Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 43(1):23–33

    Article  CAS  PubMed  Google Scholar 

  144. Males RG, Vigneron DB, Star-Lack J, et al. (2000) Clinical application of BASING and spectral/spatial water and lipid suppression pulses for prostate cancer staging and localization by in vivo 3D 1H magnetic resonance spectroscopic imaging. Magn Reson Med 43(1):17–22

    Article  CAS  PubMed  Google Scholar 

  145. Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB (1997) Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 38(2):311–321

    Article  CAS  PubMed  Google Scholar 

  146. Schricker AA, Pauly JM, Kurhanewicz J, Swanson MG, Vigneron DB (2001) Dualband spectral-spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med 46(6):1079–1087

    Article  CAS  PubMed  Google Scholar 

  147. Cunningham CH, Vigneron DB, Chen AP, et al. (2004) Design of symmetric-sweep spectral-spatial RF pulses for spectral editing. Magn Reson Med 52(1):147–153. doi:10.1002/mrm.20116

    Article  PubMed  Google Scholar 

  148. Crane JC, Olson MP, Nelson SJ (2013) SIVIC: Open-Source, Standards-Based Software for DICOM MR Spectroscopy Workflows. Int J Biomed Imaging 2013:169526. doi:10.1155/2013/169526

    Article  PubMed  PubMed Central  Google Scholar 

  149. Maudsley AA, Darkazanli A, Alger JR, et al. (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19(4):492–503. doi:10.1002/nbm.1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC (2011) A constrained least-squares approach to the automated quantitation of in vivo (1)H magnetic resonance spectroscopy data. Magn Reson Med 65(1):1–12. doi:10.1002/mrm.22579

    Article  CAS  PubMed  Google Scholar 

  151. Nelson SJ, Brown TR (1989) A study of the accuracy of quantification which can be obtained from 1-D NMR spectra using the PIQABLE algorithm. J Magn Reson 84(1):95–109

    CAS  Google Scholar 

  152. Jung JA, Coakley FV, Vigneron DB, et al. (2004) Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology 233(3):701–708

    Article  PubMed  Google Scholar 

  153. Futterer JJ, Scheenen TW, Heijmink SW, et al. (2007) Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate. Invest Radiol 42(2):116–122. doi:10.1097/01.rli.0000251541.03822.bb

    Article  PubMed  Google Scholar 

  154. Kobus T, Hambrock T, Hulsbergen-van de Kaa CA, et al. (2011) In vivo assessment of prostate cancer aggressiveness using magnetic resonance spectroscopic imaging at 3 T with an endorectal coil. Eur Urol 60(5):1074–1080. doi:10.1016/j.eururo.2011.03.002

    Article  PubMed  Google Scholar 

  155. Selnaes KM, Gribbestad IS, Bertilsson H, et al. (2013) Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer: investigation of a correlation with Gleason score. NMR Biomed 26(5):600–606. doi:10.1002/nbm.2901

    Article  CAS  PubMed  Google Scholar 

  156. Verma S, Rajesh A, Futterer JJ, et al. (2010) Prostate MRI and 3D MR spectroscopy: how we do it. Am J Roentgenol 194(6):1414–1426. doi:10.2214/AJR.10.4312/AJR.10.4312

    Article  Google Scholar 

  157. Sciarra A, Panebianco V, Ciccariello M, et al. (2010) Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance (DCE-MRI): pattern changes from inflammation to prostate cancer. Cancer Invest 28(4):424–432. doi:10.3109/07357900903287048

    Article  CAS  PubMed  Google Scholar 

  158. Shukla-Dave A, Hricak H, Eberhardt SC, et al. (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings–initial observations. Radiology 231(3):717–724. doi:10.1148/radiol.2313031391

    Article  PubMed  Google Scholar 

  159. Dosda R, Marti-Bonmati L, Ronchera-Oms CL, Molla E, Arana E (2003) Effect of subcutaneous butylscopolamine administration in the reduction of peristaltic artifacts in 1.5-T MR fast abdominal examinations. Eur Radiol 13(2):294–298. doi:10.1007/s00330-002-1500-5

    PubMed  Google Scholar 

  160. Roethke MC, Kuru TH, Radbruch A, Hadaschik B, Schlemmer HP (2013) Prostate magnetic resonance imaging at 3 Tesla: is administration of hyoscine-N-butyl-bromide mandatory? World J Radiol 5(7):259–263. doi:10.4329/wjr.v5.i7.259

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wagner M, Rief M, Busch J, et al. (2010) Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 65(6):460–464. doi:10.1016/j.crad.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  162. Lim C, Quon J, McInnes M, et al. (2014) Does a cleansing enema improve image quality of 3T surface coil multiparametric prostate MRI? J Magn Reson Imaging . doi:10.1002/jmri.24833

    Google Scholar 

  163. Medved M, Sammet S, Yousuf A, Oto A (2014) MR imaging of the prostate and adjacent anatomic structures before, during, and after ejaculation: qualitative and quantitative evaluation. Radiology 271(2):452–460. doi:10.1148/radiol.14131374

    Article  PubMed  PubMed Central  Google Scholar 

  164. Dickinson L, Ahmed HU, Allen C, et al. (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494. doi:10.1016/j.eururo.2010.12.009

    Article  PubMed  Google Scholar 

  165. Kirkham AP, Haslam P, Keanie JY, et al. (2013) Prostate MRI: who, when, and how? Report from a UK consensus meeting. Clin Radiol 68(10):1016–1023. doi:10.1016/j.crad.2013.03.030

    Article  CAS  PubMed  Google Scholar 

  166. Kitajima K, Kaji Y, Fukabori Y, et al. (2010) Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging 31(3):625–631. doi:10.1002/jmri.22075

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the grant NIH RO1 CA148708 (PI Noworolski).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Westphalen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starobinets, O., Korn, N., Iqbal, S. et al. Practical aspects of prostate MRI: hardware and software considerations, protocols, and patient preparation. Abdom Radiol 41, 817–830 (2016). https://doi.org/10.1007/s00261-015-0590-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0590-x

Keywords

Navigation