Skip to main content

Advertisement

Log in

A novel semi-automatic segmentation method for volumetric assessment of the colon based on magnetic resonance imaging

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To develop a novel semi-automatic segmentation method for quantification of the colon from magnetic resonance imaging (MRI).

Methods

Fourteen abdominal T2-weighted and dual-echo Dixon-type water-only MRI scans were obtained from four healthy subjects. Regions of interest containing the colon were outlined manually on the T2-weighted images. Segmentation of the colon and feces was obtained using k-means clustering and image registration. Regional colonic and fecal volumes were obtained. Inter-observer agreement between two observers was assessed using the Dice similarity coefficient as measure of overlap.

Results

Colonic segmentations showed wide variation in volume and morphology between subjects. Colon volumes of the four healthy subjects for both observers were (median [interquartile range]) ascending colon 200 mL [169.5–260], transverse 200.5 mL [113.5–242.5], descending 148 mL [121.5–178.5], sigmoid-rectum 277 mL [192–345], and total 819 mL [687–898.5]. Overlap agreement for the total colon segmentation between the two observers was high with a Dice similarity coefficient of 0.91 [0.84–0.94]. The colon volume to feces volume ratio was on average 0.7.

Conclusion

Regional colon volumes were comparable to previous findings using fully manual segmentation. The method showed good agreement between observers and may be used in future studies of gastrointestinal disorders to assess colon and fecal volume and colon morphology. Novel insight into morphology and quantitative assessment of the colon using this method may provide new biomarkers for constipation and abdominal pain compared to radiography which suffers from poor reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moylan S, Armstrong J, Diaz-Saldano D, et al. (2010) Are abdominal X-rays a reliable way to assess for constipation? J Urol 184:1692–1698. doi:10.1016/j.juro.2010.05.054

    Article  PubMed  Google Scholar 

  2. Wyatt CL, Ge Y, Vining DJ (2000) Automatic segmentation of the colon for virtual colonoscopy. Comput Med Imaging Graph 24:1–9. doi:10.1016/S0895-6111(99)00039-7

    Article  CAS  PubMed  Google Scholar 

  3. Franaszek M, Summers RM, Pickhardt PJ, Choi JR (2006) Hybrid segmentation of colon filled with air and opacified fluid for CT colonography. IEEE Trans Med Imaging 25:358–368. doi:10.1109/TMI.2005.863836

    Article  PubMed  Google Scholar 

  4. Lu L, Zhao J (2013) An improved method of automatic colon segmentation for virtual colon unfolding. Comput Methods Programs Biomed 109:1–12. doi:10.1016/j.cmpb.2012.08.012

    Article  PubMed  Google Scholar 

  5. Bert A, Dmitriev I, Agliozzo S, et al. (2009) An automatic method for colon segmentation in CT colonography. Comput Med Imaging Graph 33:325–331. doi:10.1016/j.compmedimag.2009.02.004

    Article  PubMed  Google Scholar 

  6. Wyatt CL, Ge Y, Vining DJ (2006) Segmentation in virtual colonoscopy using a geometric deformable model. Comput Med Imaging Graph 30:17–30. doi:10.1016/j.compmedimag.2005.07.003

    Article  PubMed  Google Scholar 

  7. Losnegård A, Hysing LB, Muren LP, Hodneland E, Lundervold A (2010) Semi-automated segmentation of the sigmoid and descending colon for radiotherapy planning using the fast marching method. Phys Med Biol 55:5569–5584. doi:10.1088/0031-9155/55/18/020

    Article  PubMed  Google Scholar 

  8. Bielen D, Kiss G (2007) Computer-aided detection for CT colonography: update 2007. Abdom Imaging 32:571–581. doi:10.1007/s00261-007-9293-2

    Article  PubMed  Google Scholar 

  9. Pritchard SE, Marciani L, Garsed KC, et al. (2014) Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial MRI. Neurogastroenterol Motil 26:124–130. doi:10.1111/nmo.12243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Murray K, Wilkinson-Smith V, Hoad C, et al. (2014) Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am J Gastroenterol 109:110–119. doi:10.1038/ajg.2013.386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Major G, Teale A, Pritchard S, et al. (2014) OC-070 Dietary supplementation with fodmaps increases fasting colonic volume and breath hydrogen in healthy volunteers: a mechanistic study using Mri. Gut 63:A35–A35. doi:10.1136/gutjnl-2014-307263.70

    Article  Google Scholar 

  12. Marciani L, Garsed KC, Hoad CL, et al. (2014) Stimulation of colonic motility by oral PEG electrolyte bowel preparation assessed by MRI: comparison of split vs single dose. Neurogastroenterol Motil 26:1426–1436. doi:10.1111/nmo.12403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Haas S, Brock C, Krogh K, et al. (2014) Cortical evoked potentials in response to rapid balloon distension of the rectum and anal canal. Neurogastroenterol Motil 26:862–873. doi:10.1111/nmo.12341

    Article  CAS  PubMed  Google Scholar 

  14. Tielbeek JAW, Vos FM, Stoker J (2012) A computer-assisted model for detection of MRI signs of Crohn’s disease activity: future or fiction? Abdom Imaging 37:967–973. doi:10.1007/s00261-011-9822-x

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ma J (2004) Breath-hold water and fat imaging using a dual-echo two-point dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 52:415–419. doi:10.1002/mrm.20146

    Article  PubMed  Google Scholar 

  16. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97. doi:10.1109/42.668698

    Article  CAS  PubMed  Google Scholar 

  17. Arnold JB, Liow JS, Schaper KA, et al. (2001) Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. Neuroimage 13:931–943. doi:10.1006/nimg.2001.0756

    Article  CAS  PubMed  Google Scholar 

  18. Vovk U, Pernuš F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26:405–421. doi:10.1109/TMI.2006.891486

    Article  PubMed  Google Scholar 

  19. Chen D, Liang Z, Wax MR, et al. (2000) A novel approach to extract colon lumen from CT images for virtual colonoscopy. IEEE Trans Med Imaging 19:1220–1226. doi:10.1109/42.897814

    Article  CAS  PubMed  Google Scholar 

  20. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205. doi:10.1109/TMI.2009.2035616

    Article  PubMed  Google Scholar 

  21. Shamonin DP, Bron EE, Lelieveldt BPF, et al. (2013) Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform 7:1–15. doi:10.3389/fninf.2013.00050

    Article  Google Scholar 

  22. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302. doi:10.2307/1932409

    Article  Google Scholar 

  23. Zijdenbos A, Dawant B (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13:716–724. doi:10.1109/42.363096

    Article  CAS  PubMed  Google Scholar 

  24. Bartko JJ (1991) Measurement and reliability: statistical thinking considerations. Schizophr Bull 17:483–489. doi:10.1093/schbul/17.3.483

    Article  CAS  PubMed  Google Scholar 

  25. Dinning PG, Zarate N, Szczesniak MM, et al. (2010) Bowel preparation affects the amplitude and spatiotemporal organization of colonic propagating sequences. Neurogastroenterol Motil . doi:10.1111/j.1365-2982.2010.01480.x

    Google Scholar 

  26. Rao SSC, Sadeghi P, Beaty J, Kavlock R (2004) Ambulatory 24-hour colonic manometry in slow-transit constipation. Am J Gastroenterol 99:2405–2416. doi:10.1111/j.1572-0241.2004.40453.x

    Article  PubMed  Google Scholar 

  27. Khashab MA, Pickhardt PJ, Kim DH, Rex DK (2009) Colorectal anatomy in adults at computed tomography colonography: normal distribution and the effect of age, sex, and body mass index. Endoscopy 41:674–678. doi:10.1055/s-0029-1214899

    Article  CAS  PubMed  Google Scholar 

  28. Jiang G, Gu L (2005) An automatic and fast centerline extraction algorithm for virtual colonoscopy. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Eng Med Biol Soc Ann Conf 5:5149–52. doi: 10.1109/IEMBS.2005.1615636

  29. Bidgoli J, Ahmadian A, Akhlaghpor S, Alam N, Mahmodabadi S (2005) An efficient colon segmentation method for oral contrast-enhanced CT colonography. Conf Proc IEEE Eng Med Biol Soc 4:3429–3432. doi:10.1109/IEMBS.2005.1617215

    CAS  PubMed  Google Scholar 

  30. Pritchard SE, Garsed KC, Hoad CL, et al. (2015) Effect of experimental stress on the small bowel and colon in healthy humans. Neurogastroenterol Motil 27:542–549. doi:10.1111/nmo.12529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Steele SR, Mellgren A (2007) Constipation and obstructed defecation. Clin Colon Rectal Surg 20:110–117. doi:10.1055/s-2007-977489

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from Innovation Fund Denmark.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal rights and informed consent

This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asbjørn Mohr Drewes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandberg, T.H., Nilsson, M., Poulsen, J.L. et al. A novel semi-automatic segmentation method for volumetric assessment of the colon based on magnetic resonance imaging. Abdom Imaging 40, 2232–2241 (2015). https://doi.org/10.1007/s00261-015-0475-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0475-z

Keywords

Navigation