Abdominal Imaging

, Volume 39, Issue 4, pp 744–752 | Cite as

Pancreatic adenocarcinoma: a pilot study of quantitative perfusion and diffusion-weighted breath-hold magnetic resonance imaging

  • Hyunki Kim
  • Pablo J. Arnoletti
  • John Christein
  • Martin J. Heslin
  • James A. Posey III
  • Amol Pednekar
  • T. Mark Beasley
  • Desiree E. Morgan



To confirm the feasibility of breath-hold DCE-MRI and DWI at 3T to obtain the intra-abdominal quantitative physiologic parameters, K trans, k ep, and ADC, in patients with untreated pancreatic ductal adenocarcinomas.


Diffusion-weighted single-shot echo-planar imaging (DW-SS-EPI) and dynamic contrast-enhanced (DCE) MRI were used for 16 patients with newly diagnosed biopsy-proven pancreatic ductal adenocarcinomas. K trans, k ep, and apparent diffusion coefficient (ADC) values of pancreatic tumors, non-tumor adjacent pancreatic parenchyma (NAP), liver metastases, and normal liver tissues were quantitated and statistically compared.


Fourteen patients were able to adequately hold their breath for DCE-MRI, and 15 patients for DW-SS-EPI. Four patients had liver metastases within the 6 cm of Z axis coverage centered on the pancreatic primary tumors. K trans values (10−3 min−1) of primary pancreatic tumors, NAP, liver metastases, and normal liver tissues were 7.3 ± 4.2 (mean ± SD), 25.8 ± 14.9, 8.1 ± 5.9, and 45.1 ± 15.6, respectively, k ep values (10−2 min−1) were 3.0 ± 0.9, 7.4 ± 3.1, 5.2 ± 2.0, and 12.1 ± 2.8, respectively, and ADC values (10−3 mm2/s) were 1.3 ± 0.2, 1.6 ± 0.3, 1.1 ± 0.1, and 1.3 ± 0.1, respectively. K trans, k ep, and ADC values of primary pancreatic tumors were significantly lower than those of NAP (p < 0.05), while K trans and k ep values of liver metastases were significantly lower than those of normal liver tissues (p < 0.05).


3T breath-hold quantitative physiologic MRI is a feasible technique that can be applied to a majority of patients with pancreatic adenocarcinomas.


DCE-MRI DWI Pancreatic adenocarcinoma 


Grant support

Research Initiative Pilot Award from the Department of Radiology at UAB and NIH grant 2P30CA013148.


  1. 1.
    Evelhoch J, Garwood M, Vigneron D, et al. (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: workshop report. Cancer Res 65(16):7041–7044. doi: 10.1158/0008-5472.CAN-05-0674 PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244(1):39–47. doi: 10.1148/radiol.2441060773 PubMedCrossRefGoogle Scholar
  3. 3.
    Sorensen AG (2006) Magnetic resonance as a cancer imaging biomarker. J Clin Oncol 24(20):3274–3281. doi: 10.1200/JCO.2006.06.6597 PubMedCrossRefGoogle Scholar
  4. 4.
    Magee T, Shapiro M, Williams D (2003) Comparison of high-field-strength versus low-field-strength MRI of the shoulder. AJR Am J Roentgenol 181(5):1211–1215. doi: 10.2214/ajr.181.5.1811211 PubMedCrossRefGoogle Scholar
  5. 5.
    Schmitz BL, Aschoff AJ, Hoffmann MH, Gron G (2005) Advantages and pitfalls in 3T MR brain imaging: a pictorial review. AJNR Am J Neuroradiol 26(9):2229–2237PubMedGoogle Scholar
  6. 6.
    Parker GJ, Roberts C, Macdonald A, et al. (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Mag Reson Med 56(5):993–1000. doi: 10.1002/mrm.21066 CrossRefGoogle Scholar
  7. 7.
    Bali MA, Metens T, Denolin V, et al. (2011) Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology 261(2):456–466. doi: 10.1148/radiol.11103515 PubMedCrossRefGoogle Scholar
  8. 8.
    Kim JH, Lee JM, Park JH, et al. (2013) Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment: a preliminary study. Radiology 266(1):185–196. doi: 10.1148/radiol.12120111 PubMedCrossRefGoogle Scholar
  9. 9.
    Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205. doi: 10.1109/TMI.2009.2035616 PubMedCrossRefGoogle Scholar
  10. 10.
    Yao X, Zeng M, Wang H, et al. (2012) Evaluation of pancreatic cancer by multiple breath-hold dynamic contrast-enhanced magnetic resonance imaging at 3.0 T. Eur J Radiol 81(8):e917–e922. doi: 10.1016/j.ejrad.2012.05.011 PubMedCrossRefGoogle Scholar
  11. 11.
    Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?: a meta-analysis. AJR Am J Roentgenol 200(3):624–629. doi: 10.2214/AJR.12.8679 PubMedCrossRefGoogle Scholar
  12. 12.
    Sun XJ, Quan XY, Huang FH, Xu YK (2005) Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J Gastroenterol: WJG 11(41):6535–6537PubMedGoogle Scholar
  13. 13.
    Taouli B, Vilgrain V, Dumont E, et al. (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226(1):71–78PubMedCrossRefGoogle Scholar
  14. 14.
    Jang KM, Kim SH, Lee SJ, et al. (2013) Differentiation of an intrapancreatic accessory spleen from a small (<3 cm) solid pancreatic tumor: value of diffusion-weighted MR imaging. Radiology 266(1):159–167. doi: 10.1148/radiol.12112765 PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenkrantz AB, Matza BW, Sabach A, Hajdu CH, Hindman N (2013) Pancreatic cancer: lack of association between apparent diffusion coefficient values and adverse pathological features. Clin Radiol 68(4):e191–e197. doi: 10.1016/j.crad.2012.11.006 PubMedCrossRefGoogle Scholar
  16. 16.
    Dougherty G (2009) Digital image processing for medical applications. New York: Cambridge University PressGoogle Scholar
  17. 17.
    Tofts PS, Brix G, Buckley DL, et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232. doi:101002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-SPubMedCrossRefGoogle Scholar
  18. 18.
    Blockley NP, Jiang L, Gardener AG, et al. (2008) Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med 60(6):1313–1320. doi: 10.1002/mrm.21792 PubMedCrossRefGoogle Scholar
  19. 19.
    Neter J, Kutner MH, Nachtsheim JC, Wasserman W (1996) Applied linear statistical models, 4th edn. Columbus: The McGraw-Hill Companies Inc.Google Scholar
  20. 20.
    Zwick S, Brix G, Tofts PS, et al. (2010) Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol 20(2):432–442. doi: 10.1007/s00330-009-1556-6 PubMedCrossRefGoogle Scholar
  21. 21.
    Heye T, Davenport MS, Horvath JJ, et al. (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266(3):801–811. doi: 10.1148/radiol.12120278 PubMedCrossRefGoogle Scholar
  22. 22.
    Kudo K, Christensen S, Sasaki M, et al. (2013) Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 267(1):201–211. doi: 10.1148/radiol.12112618 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tweedle MF (1997) The ProHance story: the making of a novel MRI contrast agent. Eur Radiol 7(Suppl 5):225–230PubMedCrossRefGoogle Scholar
  24. 24.
    Fukushima N, Koopmann J, Sato N, et al. (2005) Gene expression alterations in the non-neoplastic parenchyma adjacent to infiltrating pancreatic ductal adenocarcinoma. Mod Pathol 18(6):779–787. doi: 10.1038/modpathol.3800337 PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuki M, Inada Y, Nakai G, et al. (2007) Diffusion-weighed MR imaging of pancreatic carcinoma. Abdom Imaging 32(4):481–483. doi: 10.1007/s00261-007-9192-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Balci NC, Momtahen AJ, Akduman EI, et al. (2008) Diffusion-weighted MRI of the pancreas: correlation with secretin endoscopic pancreatic function test (ePFT). Acad Radiol 15(10):1264–1268. doi: 10.1016/j.acra.2008.05.002 PubMedCrossRefGoogle Scholar
  27. 27.
    Bruegel M, Holzapfel K, Gaa J, et al. (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18(3):477–485. doi: 10.1007/s00330-007-0785-9 PubMedCrossRefGoogle Scholar
  28. 28.
    Braithwaite AC, Dale BM, Boll DT, Merkle EM (2009) Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250(2):459–465. doi: 10.1148/radiol.2502080849 PubMedCrossRefGoogle Scholar
  29. 29.
    Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210(3):617–623. doi: 10.1148/radiology.210.3.r99fe17617 PubMedCrossRefGoogle Scholar
  30. 30.
    Hwang EJ, Cha Y, Lee AL, et al. (2013) Early response evaluation for recurrent high grade gliomas treated with bevacizumab: a volumetric analysis using diffusion-weighted imaging. J Neurooncol 112(3):427–435. doi: 10.1007/s11060-013-1072-z PubMedCrossRefGoogle Scholar
  31. 31.
    Kim HS, Kim CK, Park BK, Huh SJ, Kim B (2013) Evaluation of therapeutic response to concurrent chemoradiotherapy in patients with cervical cancer using diffusion-weighted MR imaging. J Magn Reson Imaging: JMRI 37(1):187–193. doi: 10.1002/jmri.23804 PubMedCrossRefGoogle Scholar
  32. 32.
    Chopra S, Verma A, Kundu S, et al. (2012) Evaluation of diffusion-weighted imaging as a predictive marker for tumor response in patients undergoing chemoradiation for postoperative recurrences of cervical cancer. J Cancer Res Ther 8(1):68–73. doi: 10.4103/0973-1482.95177 PubMedCrossRefGoogle Scholar
  33. 33.
    Chang YC, Yu CJ, Chen CM, et al. (2012) Dynamic contrast-enhanced MRI in advanced nonsmall-cell lung cancer patients treated with first-line bevacizumab, gemcitabine, and cisplatin. J Magn Reson Imaging: JMRI 36(2):387–396. doi: 10.1002/jmri.23660 PubMedCrossRefGoogle Scholar
  34. 34.
    Chikui T, Kitamoto E, Kawano S, et al. (2012) Pharmacokinetic analysis based on dynamic contrast-enhanced MRI for evaluating tumor response to preoperative therapy for oral cancer. J Magn Reson Imaging: JMRI 36(3):589–597. doi: 10.1002/jmri.23704 PubMedCrossRefGoogle Scholar
  35. 35.
    Kim JH, Kim CK, Park BK, et al. (2012) Dynamic contrast-enhanced 3-T MR imaging in cervical cancer before and after concurrent chemoradiotherapy. Eur Radiol 22(11):2533–2539. doi: 10.1007/s00330-012-2504-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hyunki Kim
    • 1
    • 2
    • 6
    • 9
  • Pablo J. Arnoletti
    • 7
  • John Christein
    • 3
  • Martin J. Heslin
    • 3
  • James A. Posey III
    • 4
  • Amol Pednekar
    • 8
  • T. Mark Beasley
    • 5
  • Desiree E. Morgan
    • 1
    • 6
  1. 1.Departments of RadiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of SurgeryUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamUSA
  6. 6.Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamUSA
  7. 7.The Center for Specialized SurgeryOrlandoPhilips
  8. 8.Medical SystemsBothellUSA
  9. 9.BirminghamUSA

Personalised recommendations