Skip to main content

Advertisement

Log in

Characterizing solid renal neoplasms with MRI in adults

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Until recently, most solid renal neoplasms without macroscopic fat were presumed to represent renal cell carcinoma and were indiscriminately treated with nephrectomy. Expanding surgical options and ablative technologies, a growing acceptance of renal mass biopsy, the advent of targeted molecular agents, and advances in our understanding of tumor biology have challenged the wisdom of this approach and are ushering in a potential new era in which therapy is linked to histologic subtype and cytogenetics. This approach mandates evolution of our diagnostic algorithm beyond the distinction between solid and cystic and enhancing and nonenhancing. Computed tomography (CT) has traditionally been the imaging technique of choice for evaluating potential solid renal tumors, in large part due to its widespread availability, high spatial resolution, calcium discrimination, and multiphase, enhanced imaging capabilities. For the most part, however, CT is limited to characterization based upon the attenuation and enhancement characteristics of a lesion and necessitates exposure of patients to ionizing radiation. For these latter reasons, multiparametric magnetic resonance imaging (MRI) is being increasingly used to characterize solid renal masses. The purpose of this manuscript is to review our imaging approach to solid renal masses in adults utilizing MRI with an emphasis on a multiparametric approach augmented by clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Uzzo RG, Novick AC (2001) Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 166(1):6–18

    Article  CAS  PubMed  Google Scholar 

  2. Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. doi:10.1056/NEJMoa1113205

    Article  CAS  PubMed  Google Scholar 

  3. Jayson M, Sanders H (1998) Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51(2):203–205

    Article  CAS  PubMed  Google Scholar 

  4. Luciani LG, Cestari R, Tallarigo C (2000) Incidental renal cell carcinoma-age and stage characterization and clinical implications: study of 1092 patients (1982–1997). Urology 56(1):58–62

    Article  CAS  PubMed  Google Scholar 

  5. Yoshimitsu K, Irie H, Tajima T, et al. (2004) MR imaging of renal cell carcinoma: its role in determining cell type. Radiat Med 22(6):371–376

    PubMed  Google Scholar 

  6. Rosenkrantz AB, Raj S, Babb JS, Chandarana H (2012) Comparison of 3D two-point Dixon and standard 2D dual-echo breath-hold sequences for detection and quantification of fat content in renal angiomyolipoma. Eur J Radiol 81(1):47–51. doi:10.1016/j.ejrad.2010.11.012

    Article  PubMed  Google Scholar 

  7. Pedrosa I, Sun MR, Spencer M, et al. (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28(4):985–1003. doi:10.1148/rg.284065018

    Article  PubMed  Google Scholar 

  8. Wang H, Cheng L, Zhang X, et al. (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257(1):135–143. doi:10.1148/radiol.10092396

    Article  PubMed  Google Scholar 

  9. Yoshida S, Masuda H, Ishii C, et al. (2011) Usefulness of diffusion-weighted MRI in diagnosis of upper urinary tract cancer. AJR Am J Roentgenol 196(1):110–116. doi:10.2214/AJR.10.4632

    Article  PubMed  Google Scholar 

  10. Nguyen DD, Rakita D (2013) Renal lymphoma: MR appearance with diffusion-weighted imaging. J Comput Assist Tomogr 37(5):840–842. doi:10.1097/RCT.0b013e3182a55d0a

    Article  PubMed  Google Scholar 

  11. Sun MR, Ngo L, Genega EM, et al. (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 250(3):793–802. doi:10.1148/radiol.2503080995

    Article  PubMed  Google Scholar 

  12. Raman SP, Hruban RH, Fishman EK (2012) Beyond renal cell carcinoma: rare and unusual renal masses. Abdom Imaging 37(5):873–884. doi:10.1007/s00261-012-9903-5

    Article  PubMed  Google Scholar 

  13. Medeiros LJ, Palmedo G, Krigman HR, Kovacs G, Beckwith JB (1999) Oncocytoid renal cell carcinoma after neuroblastoma: a report of four cases of a distinct clinicopathologic entity. Am J Surg Pathol 23(7):772–780

    Article  CAS  PubMed  Google Scholar 

  14. Sacco E, Pinto F, Sasso F, et al. (2009) Paraneoplastic syndromes in patients with urological malignancies. Urol Int 83(1):1–11. doi:10.1159/000224860

    Article  PubMed  Google Scholar 

  15. Wagner S, Greco F, Hamza A, et al. (2009) Retroperitoneal malignant solitary fibrous tumor of the small pelvis causing recurrent hypoglycemia by secretion of insulin-like growth factor 2. Eur Urol 55(3):739–742. doi:10.1016/j.eururo.2008.09.050

    Article  PubMed  Google Scholar 

  16. Zhao G, Li G, Han R (2012) Two malignant solitary fibrous tumors in one kidney: case report and review of the literature. Oncol Lett 4(5):993–995. doi:10.3892/ol.2012.858

    PubMed Central  PubMed  Google Scholar 

  17. Pickhardt PJ, Lonergan GJ, Davis CJ, Jr, Kashitani N, Wagner BJ (2000) From the archives of the AFIP. Infiltrative renal lesions: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics 20(1):215–243

    Article  CAS  PubMed  Google Scholar 

  18. Sheth S, Ali S, Fishman E (2006) Imaging of renal lymphoma: patterns of disease with pathologic correlation. Radiographics 26(4):1151–1168. doi:10.1148/rg.264055125

    Article  PubMed  Google Scholar 

  19. Zhang C, Li X, Hao H, et al. (2012) The correlation between size of renal cell carcinoma and its histopathological characteristics: a single center study of 1867 renal cell carcinoma cases. BJU Int 110(11(Pt B)):E481–E485. doi:10.1111/j.1464-410X.2012.11173.x

    Article  PubMed  Google Scholar 

  20. Hindman N, Ngo L, Genega EM, et al. (2012) Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265(2):468–477. doi:10.1148/radiol.12112087

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dunnick NR, Hartman DS, Ford KK, Davis CJ Jr, Amis ES Jr (1983) The radiology of juxtaglomerular tumors. Radiology 147(2):321–326. doi:10.1148/radiology.147.2.6836111

    CAS  PubMed  Google Scholar 

  22. Prasad SR, Humphrey PA, Menias CO, et al. (2005) Neoplasms of the renal medulla: radiologic-pathologic correlation. Radiographics 25(2):369–380. doi:10.1148/rg.252045073

    Article  PubMed  Google Scholar 

  23. Katabathina VS, Vikram R, Nagar AM, et al. (2010) Mesenchymal neoplasms of the kidney in adults: imaging spectrum with radiologic-pathologic correlation. Radiographics 30(6):1525–1540. doi:10.1148/rg.306105517

    Article  PubMed  Google Scholar 

  24. Rha SE, Byun JY, Jung SE, et al. (2004) The renal sinus: pathologic spectrum and multimodality imaging approach. Radiographics 24(suppl 1):S117–S131. doi:10.1148/rg.24si045503

    Article  PubMed  Google Scholar 

  25. Israel GM, Hindman N, Hecht E, Krinsky G (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184(6):1868–1872

    Article  PubMed  Google Scholar 

  26. Helenon O, Merran S, Paraf F, et al. (1997) Unusual fat-containing tumors of the kidney: a diagnostic dilemma. Radiographics 17(1):129–144. doi:10.1148/radiographics.17.1.9017804

    Article  CAS  PubMed  Google Scholar 

  27. Wasser EJ, Shyn PB, Riveros-Angel M, et al. (2013) Renal cell carcinoma containing abundant non-calcified fat. Abdom Imaging 38(3):598–602. doi:10.1007/s00261-012-9921-3

    Article  PubMed  Google Scholar 

  28. Karlo CA, Donati OF, Burger IA, et al. (2013) MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Eur Radiol 23(6):1738–1744. doi:10.1007/s00330-012-2758-x

    Article  PubMed  Google Scholar 

  29. Yoshimitsu K, Honda H, Kuroiwa T, et al. (1999) MR detection of cytoplasmic fat in clear cell renal cell carcinoma utilizing chemical shift gradient-echo imaging. J Magn Reson Imaging 9(4):579–585

    Article  CAS  PubMed  Google Scholar 

  30. Oliva MR, Glickman JN, Zou KH, et al. (2009) Renal cell carcinoma: t1 and t2 signal intensity characteristics of papillary and clear cell types correlated with pathology. AJR Am J Roentgenol 192(6):1524–1530. doi:10.2214/AJR.08.1727

    Article  PubMed  Google Scholar 

  31. Wile GE, Leyendecker JR, Krehbiel KA, Dyer RB, Zagoria RJ (2007) CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics 27(2):325–339 (Discussion 339–340). doi:10.1148/rg.272065083

    Article  PubMed  Google Scholar 

  32. Johnson TR, Pedrosa I, Goldsmith J, Dewolf WC, Rofsky NM (2005) Magnetic resonance imaging findings in solitary fibrous tumor of the kidney. J Comput Assist Tomogr 29(4):481–483

    Article  PubMed  Google Scholar 

  33. Cornelis F, Lasserre AS, Tourdias T, et al. (2013) Combined late gadolinium-enhanced and double-echo chemical-shift MRI help to differentiate renal oncocytomas with high central T2 signal intensity from renal cell carcinomas. AJR Am J Roentgenol 200(4):830–838. doi:10.2214/AJR.12.9122

    Article  PubMed  Google Scholar 

  34. Granter SR, Perez-Atayde AR, Renshaw AA (1998) Cytologic analysis of papillary renal cell carcinoma. Cancer 84(5):303–308

    Article  CAS  PubMed  Google Scholar 

  35. Eble JN (1998) Angiomyolipoma of kidney. Semin Diagn Pathol 15(1):21–40

    CAS  PubMed  Google Scholar 

  36. Mittal V, Aulakh BS, Daga G (2011) Benign renal angiomyolipoma with inferior vena cava thrombosis. Urology 77(6):1503–1506. doi:10.1016/j.urology.2011.01.039

    Article  PubMed  Google Scholar 

  37. Quinn MJ, Hartman DS, Friedman AC, et al. (1984) Renal oncocytoma: new observations. Radiology 153(1):49–53

    CAS  PubMed  Google Scholar 

  38. Vargas HA, Chaim J, Lefkowitz RA, et al. (2012) Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 264(3):779–788. doi:10.1148/radiol.12110746

    Article  PubMed  Google Scholar 

  39. Bastide C, Rambeaud JJ, Bach AM, Russo P (2009) Metanephric adenoma of the kidney: clinical and radiological study of nine cases. BJU Int 103(11):1544–1548. doi:10.1111/j.1464-410X.2009.08357.x

    Article  PubMed  Google Scholar 

  40. Jung SC, Cho JY, Kim SH (2012) Subtype differentiation of small renal cell carcinomas on three-phase MDCT: usefulness of the measurement of degree and heterogeneity of enhancement. Acta Radiol 53(1):112–118. doi:10.1258/ar.2011.110221

    Article  PubMed  Google Scholar 

  41. Sasiwimonphan K, Takahashi N, Leibovich BC, et al. (2012) Small (<4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology 263(1):160–168. doi:10.1148/radiol.12111205

    Article  PubMed  Google Scholar 

  42. Kim JI, Cho JY, Moon KC, Lee HJ, Kim SH (2009) Segmental enhancement inversion at biphasic multidetector CT: characteristic finding of small renal oncocytoma. Radiology 252(2):441–448. doi:10.1148/radiol.2522081180

    Article  PubMed  Google Scholar 

  43. Rosenkrantz AB, Hindman N, Fitzgerald EF, et al. (2010) MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am J Roentgenol 195(6):W421–W427. doi:10.2214/AJR.10.4718

    Article  PubMed  Google Scholar 

  44. McGahan JP, Lamba R, Fisher J, et al. (2011) Is segmental enhancement inversion on enhanced biphasic MDCT a reliable sign for the noninvasive diagnosis of renal oncocytomas? AJR Am J Roentgenol 197(4):W674–W679. doi:10.2214/AJR.11.6463

    Article  PubMed  Google Scholar 

  45. Kondo T, Nakazawa H, Sakai F, et al. (2004) Spoke-wheel-like enhancement as an important imaging finding of chromophobe cell renal carcinoma: a retrospective analysis on computed tomography and magnetic resonance imaging studies. Int J Urol 11(10):817–824. doi:10.1111/j.1442-2042.2004.00907.x

    Article  PubMed  Google Scholar 

  46. Paudyal B, Paudyal P, Tsushima Y, et al. (2010) The role of the ADC value in the characterisation of renal carcinoma by diffusion-weighted MRI. Br J Radiol 83(988):336–343. doi:10.1259/bjr/74949757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Taouli B, Thakur RK, Mannelli L, et al. (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251(2):398–407. doi:10.1148/radiol.2512080880

    Article  PubMed  Google Scholar 

  48. Sufana Iancu A, Colin P, Puech P, et al. (2013) Significance of ADC value for detection and characterization of urothelial carcinoma of upper urinary tract using diffusion-weighted MRI. World J Urol 31(1):13–19. doi:10.1007/s00345-012-0945-7

    Article  CAS  PubMed  Google Scholar 

  49. Lin C, Luciani A, Itti E, et al. (2010) Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 20(8):2027–2038. doi:10.1007/s00330-010-1758-y

    Article  PubMed  Google Scholar 

  50. Sandrasegaran K, Sundaram CP, Ramaswamy R, et al. (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol 194(2):438–445. doi:10.2214/AJR.09.3024

    Article  PubMed  Google Scholar 

  51. Tanaka H, Yoshida S, Fujii Y, et al. (2011) Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol 18(10):727–730. doi:10.1111/j.1442-2042.2011.02824.x

    Article  PubMed  Google Scholar 

  52. Coleman JA, Russo P (2009) Hereditary and familial kidney cancer. Curr Opin Urol 19(5):478–485. doi:10.1097/MOU.0b013e32832f0d40

    Article  PubMed  Google Scholar 

  53. Verine J, Pluvinage A, Bousquet G, et al. (2010) Hereditary renal cancer syndromes: an update of a systematic review. Eur Urol 58(5):701–710. doi:10.1016/j.eururo.2010.08.031

    Article  PubMed  Google Scholar 

  54. Northrup BE, Jokerst CE, Grubb RL 3rd, et al. (2012) Hereditary renal tumor syndromes: imaging findings and management strategies. AJR Am J Roentgenol 199(6):1294–1304. doi:10.2214/AJR.12.9079

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, B.C., Tirman, P., Jennings Clingan, M. et al. Characterizing solid renal neoplasms with MRI in adults. Abdom Imaging 39, 358–387 (2014). https://doi.org/10.1007/s00261-014-0074-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0074-4

Keywords

Navigation