Skip to main content

Perspective on radiation risk in CT imaging

Abstract

Awareness of and communication about issues related to radiation dose are beneficial for patients, clinicians, and radiology departments. Initiating and facilitating discussions of the net benefit of CT by enlisting comparisons to more familiar activities, or by conveying that the anticipated radiation dose to an exam is similar to or much less than annual background levels help resolve the concerns of many patients and providers. While radiation risk estimates at the low doses associated with CT contain considerable uncertainty, we choose to err on the side of safety by assuming a small risk exists, even though the risk at these dose levels may be zero. Thus, radiologists should individualize CT scans according to patient size and diagnostic task to ensure that maximum benefit and minimum risk is achieved. However, because the magnitude of net benefit is driven by the potential benefit of a positive exam, radiation dose should not be reduced if doing so may compromise making an accurate diagnosis. The benefits and risks of CT are also highly individualized, and require consideration of many factors by patients, clinicians, and radiologists. Radiologists can assist clinicians and patients with understanding many of these factors, including test performance, potential patient benefit, and estimates of potential risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Linet MS, Slovis TL, Miller DL, et al. (2012) Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin. doi:10.3322/caac.21132

  2. Mettler FAJ, Thomadsen BR, Bhargavan M, et al. (2008) Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys 95(5):502–507

    PubMed  Article  CAS  Google Scholar 

  3. McCollough CH, Guimaraes L, Fletcher JG (2009) In defense of body CT. AJR Am J Roentgenol 193(1):28–39. doi:10.2214/AJR.09.2754

    PubMed  Article  Google Scholar 

  4. Johnson CD, Chen MH, Toledano AY, et al. (2008) Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med 359(12):1207–1217

    PubMed  Article  CAS  Google Scholar 

  5. Pickhardt PJ, Choi JR, Hwang I, et al. (2003) Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med 349(23):2191–2200

    PubMed  Article  CAS  Google Scholar 

  6. Fletcher JG, Fidler JL, Bruining DH, Huprich JE (2011) New concepts in intestinal imaging for inflammatory bowel diseases. Gastroenterology 140(6):1795–1806. doi:10.1053/j.gastro.2011.02.013

    PubMed  Article  Google Scholar 

  7. Silverman SG, Leyendecker JR, Amis ES (2009) What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology 250(2):309–323. doi:10.1148/radiol.2502080534

    PubMed  Article  Google Scholar 

  8. Fleischmann D, Hallett RL, Rubin GD (2006) CT angiography of peripheral arterial disease. J Vasc Interv Radiol 17(1):3–26. doi:10.1097/01.Rvi.0000191361.02857.De

    PubMed  Article  Google Scholar 

  9. FDA (2002) What are the radiation risks from CT? http://wwwfdagov/ForConsumers/ConsumerUpdates/ucm115329htm. Accessed 05/09/2012

  10. McCollough CH, Leng S, Yu L, et al. (2011) CT dose index and patient dose: they are not the same thing. Radiology 259(2):311–316

    PubMed  Article  Google Scholar 

  11. McCollough C (2008) CT dose: how to measure, how to reduce. Health Phys 95(5):508–517

    PubMed  Article  CAS  Google Scholar 

  12. American Association of Physicists in Medicine (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations (Task Group 204). College Park, MD: AAPM

  13. Martin C (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647

    PubMed  Article  CAS  Google Scholar 

  14. McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194(4):890–896. doi:10.2214/AJR.09.4179

    PubMed  Article  Google Scholar 

  15. Cologne J, Cullings H, Furukawa K, Ross P (2010) Attributable risk for radiation in the presence of other risk factors. Health Phys 99(5):603–612

    PubMed  Article  CAS  Google Scholar 

  16. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2006) Health risks from exposure to low levels of ionizing radiation, BEIR VII phase 2. Washington, DC: National Academic Press

  17. Preston DL, Kusumi S, Tomonaga M, et al. (1994) Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 137(Suppl 2):S68–S97

    PubMed  Article  CAS  Google Scholar 

  18. Preston DL, Ron E, Tokuoka S, et al. (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64

    PubMed  Article  CAS  Google Scholar 

  19. Cohen BL (2002) Cancer risk from low-level radiation. AJR Am J Roentgenol 179(5):1137–1143

    PubMed  Google Scholar 

  20. Little MP, Muirhead CR (1998) Curvature in the cancer mortality dose response in Japanese atomic bomb survivors: absence of evidence of threshold. Int J Radiat Biol 74(4):471–480

    PubMed  Article  CAS  Google Scholar 

  21. Tubiana M, Feinendegen LE, Yang C, Kaminski JM (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251(1):13–22

    PubMed  Article  Google Scholar 

  22. Cardis E, Vrijheid M, Blettner M, et al. (2005) Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. Br Med J 331(7508):77

    Article  CAS  Google Scholar 

  23. Canadian Nuclear Safety Commission (2011) Verifying Canadian nuclear energy worker radiation risk: a reanalysis of cancer mortality in Canadian Nuclear Energy Workers (1957–1994). Report # INFO-0811

  24. Muirhead CR, O’Hagan JA, Haylock RG, et al. (2009) Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer 100(1):206–212. doi:10.1038/sj.bjc.6604825

    PubMed  Article  CAS  Google Scholar 

  25. Howe GR (1995) Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the Atomic Bomb survivors study. Radiat Res 142(3):295–304

    PubMed  Article  CAS  Google Scholar 

  26. Davis FG, Boice JD Jr, Hrubec Z, Monson RR (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 49(21):6130–6136

    PubMed  CAS  Google Scholar 

  27. American Association of Physicists in Medicine (2011) AAPM position statement on radiation risks from medical imaging procedures (Policy No. PP 25-A). http://wwwaapmorg/org/policies/detailsasp?id=318&type=PP&current=true

  28. Health Physics Society (2004) Radiation risk in perspective. Position Statement of the Health Physics Society: PS010-1

  29. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: National Academies Press

  30. Gerber TC, Carr JJ, Arai AE, et al. (2009) Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119(7):1056–1065. doi:10.1161/CIRCULATIONAHA.108.191650

    PubMed  Article  Google Scholar 

  31. Berrington de González A, Kim KP, Knudsen AB, et al. (2011) Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. AJR Am J Roentgenol 196:816–823

    PubMed  Article  Google Scholar 

  32. McBride J, Wardrop R, Paxton B, et al. (2012) Effect on examination ordering by physician attitude, common knowledge, and practice behavior regarding CT radiation exposure. Clin Imaging (in press)

  33. Bithell JF, Stewart AM (1975) Pre-natal irradiation and childhood malignancy: a review of British data from the Oxford Survey. Br J Cancer 31(3):271–287

    PubMed  Article  CAS  Google Scholar 

  34. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284. doi:10.1056/NEJMra072149

    PubMed  Article  CAS  Google Scholar 

  35. Marin D, Nelson RC, Rubin GD, Schindera ST (2011) Body CT: technical advances for improving safety. AJR Am J Roentgenol 197:33–41

    PubMed  Article  Google Scholar 

  36. Hara AK, Paden RG, Silva AC, et al. (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771

    PubMed  Article  Google Scholar 

  37. Guimaraes LS, Fletcher JG, Harmsen WS, et al. (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257(3):732–742. doi:10.1148/radiol.10092016

    PubMed  Article  Google Scholar 

  38. Kaza RK, Platt JF, Al-Hawary MM, et al. (2012) CT enterography at 80 kVp with adaptive statistical iterative reconstruction versus at 120 kVp with standard reconstruction: image quality, diagnostic adequacy, and dose reduction. AJR Am J Roentgenol 198(5):1084–1092

    PubMed  Article  Google Scholar 

  39. Ehman EC, Guimaraes LS, Fidler JL, et al. (2012) Noise reduction to decrease radiation dose and improve conspicuity of hepatic lesions at contrast-enhanced 80-kV hepatic CT using projection space denoising. AJR American journal of roentgenology 198(2):405–411. doi:10.2214/AJR.11.6987

    PubMed  Article  Google Scholar 

  40. Hough D, Fletcher J, Grant K, et al. (2012) Lowering kV to reduce radiation dose in contrast-enhanced abdominal CT: initial assessment of a prototype automatic kV selection tool. AJR Am J Roentgenol (in press)

  41. Sahani D (March 1, 2012) Personal communication. Massachusetts General Hospital

  42. Radiology ACo (2011) ACR appropriateness criteria. (http://wwwacrorg/Quality-Safety/Appropriateness-Criteria). Accessed March 1, 2012

  43. Hartman RP, Kawashima A, Takahashi H, et al. (2012) Applications of dual-energy CT in urologic imaging: an update. Radiol Clin North Am 50:191–205

    PubMed  Article  Google Scholar 

  44. Huprich JE, Fletcher JG, Fidler JL, et al. (2011) Prospective blinded comparison of wireless capsule endoscopy and multiphase CT enterography in obscure gastrointestinal bleeding. Radiology 260(3):744–751. doi:10.1148/radiol.11110143

    PubMed  Article  Google Scholar 

  45. Durand DJ (2011) A rational approach to the clinical use of cumulative effective dose estimates. AJR Am J Roentgenol 197(1):160–162. doi:10.2214/AJR.10.6195

    PubMed  Article  Google Scholar 

  46. McCollough CH, Chen G, Kalender W, et al. (2012) Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology. doi:10.1148/radiol.12112265

  47. Fletcher JG, Wiersema MJ, Farrell MA, et al. (2003) Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology 229(1):81–90

    PubMed  Article  Google Scholar 

  48. Yu L, Liu X, Leng S, et al. (2009) Radiation dose reduction in computed tomography: techniques and future perspective (PMC3271708). Imaging Med 1(1):65–84. doi:10.2217/iim.09.5

    PubMed  Article  Google Scholar 

  49. Kim K, Kim YH, Kim SY, et al. (2012) Low-dose abdominal CT for evaluating suspected appendicitis. N Engl J Med 366(17):1596–1605

    PubMed  Article  CAS  Google Scholar 

  50. Allen BC, Baker ME, Einstein DM, et al. (2010) Effect of altering automatic exposure control settings and quality reference mAs on radiation dose, image quality, and diagnostic efficacy in MDCT enterography of active inflammatory Crohn’s disease. AJR Am J Roentgenol 195(1):89–100. doi:10.2214/AJR.09.3611

    PubMed  Article  Google Scholar 

  51. Kambadakone AR, Prakash P, Hahn PF, Sahani DV (2010) Low-dose CT examinations in Crohn’s disease: impact on image quality, diagnostic performance, and radiation dose. AJR Am J Roentgenol 195(1):78–88. doi:10.2214/AJR.09.3420

    PubMed  Article  Google Scholar 

  52. Seo H, Lee KH, Kim HJ, et al. (2009) Diagnosis of acute appendicitis with sliding slab ray-sum interpretation of low-dose unenhanced CT and standard-dose i.v. contrast-enhanced CT scans. AJR Am J Roentgenol 193(1):96–105. doi:10.2214/AJR.08.1237

    PubMed  Article  Google Scholar 

  53. Niemann T, Kollmann T, Bongartz G (2008) Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol 191(2):396–401

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel G. Fletcher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fletcher, J.G., Kofler, J.M., Coburn, J.A. et al. Perspective on radiation risk in CT imaging. Abdom Imaging 38, 22–31 (2013). https://doi.org/10.1007/s00261-012-9933-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-012-9933-z

Keywords

  • CT
  • Radiation dose
  • Radiation risk