Skip to main content

Advertisement

Log in

Small intestinal tumors: diagnostic accuracy of enhanced multi-detector CT virtual endoscopy

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Objective

To study the diagnostic accuracy of enhanced multi-detector CT virtual endoscopy (MDCT-VE) for small intestinal tumors.

Materials and methods

125 patients were examined by multi-detector CT (MDCT: 54 on 4-slice; 71 on 64-slice) following standard gastrointestinal tract cleansing, oral double contrast aerogenesis agent, and rectal gas administration. Unenhanced CT was performed, followed by enhanced CT in supine (30 and 80s delay after 100 mL standard intravenous contrast medium) and prone positions (180s delay). Supplementary CT in the lateral position was performed if small bowel was not well-filled. Images were reviewed on post-processing workstations with Virtual Endoscopy software.

Results

33/125 patients had proven small intestinal tumors: ten stromal tumors, nine lymphoma, eight adenocarcinomas, three hemangiomas, one each lipoma, Brunner gland adenoma, and hamartoma. 92 were nontumors. MDCT-VE correctly identified 30/33 cases with one false-positive diagnosis: sensitivity 90.9%, specificity 98.9% and accuracy 96.8%.

Conclusion

Small intestinal MDCT-VE technique has high diagnostic accuracy for the detection of intestinal tumors. Contrast enhancement and adequate intestinal tract gas-filling can improve the detection rate for small intestinal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Romano S, De Lutio E, Rollandi GA, et al. (2005) Multidetector computed tomography enteroclysis (MDCT-E) with neutral enteral and IV contrast enhancement in tumour detection. Eur Radiol 15:1178–1183

    Article  PubMed  Google Scholar 

  2. Sailer J, Zacherl J, Schima W (2007) MDCT of small bowel tumours. Cancer Imaging 7:224–233

    Article  PubMed  Google Scholar 

  3. Masselli G, Polettini E, Casciani E, et al. (2009) Small-bowel neoplasms: prospective evaluation of MR enteroclysis. Radiology 251:743–750

    Article  PubMed  Google Scholar 

  4. Van Weyenberg SJ, Meijerink MR, Jacobs MA, et al. (2010) MR enteroclysis in the diagnosis of small-bowel neoplasms. Radiology 254:765–773

    Article  PubMed  Google Scholar 

  5. Mazzeo S, Caramella D, Belcari A, et al. (2005) Multidetector CT of the small bowel: evaluation after oral hyperhydration with isotonic solution. Radiol Med 109:516–526

    PubMed  Google Scholar 

  6. Delabrousse E, Destrumelle N, Brunelle S, et al. (2003) CT of small bowel obstruction in adults. Abdom Imaging 28:257–266

    Article  PubMed  CAS  Google Scholar 

  7. Reittner P, Goritschnig T, Petritsch W, et al. (2002) Multiplanar spiral CT enterography in patients with Crohn’s disease using a negative oral contrast material: initial results of a noninvasive imaging approach. Eur Radiol 12:2253–2257

    PubMed  Google Scholar 

  8. Rajesh A, Maglinte DD (2006) Multislice CT enteroclysis: technique and clinical applications. Clin Radiol 61:31–39

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt S, Felley C, Meuwly JY, Schnyder P, Denys A (2006) CT enteroclysis: technique and clinical applications. Eur Radiol 16:648–660

    Article  PubMed  Google Scholar 

  10. Maglinte DD, Sandrasegaran K, Lappas JC (2007) CT enteroclysis: techniques and applications. Radiol Clin North Am 45:289–301

    Article  PubMed  Google Scholar 

  11. Doerfler OC, Ruppert-Kohlmayr AJ, Reittner P, et al. (2003) Helical CT of the small bowel with an alternative oral contrast material in patients with Crohn disease. Abdom Imaging 28:313–318

    Article  PubMed  CAS  Google Scholar 

  12. Ramsay DW, Markham DH, Morgan B, Rodgers PM, Liddicoat AJ (2001) The use of dilute Calogen as a fat density oral contrast medium in upper abdominal computed tomography, compared with the use of water and positive oral contrast media. Clin Radiol 56:670–673

    Article  PubMed  CAS  Google Scholar 

  13. Zhang LH, Zhang SZ, Hu HJ, et al. (2005) Multi-detector CT enterography with iso-osmotic mannitol as oral contrast for detecting small bowel disease. World J Gastroenterol 11:2324–2329

    PubMed  Google Scholar 

  14. Thompson SE, Raptopoulos V, Sheiman RL, McNicholas MM, Prassopoulos P (1999) Abdominal helical CT: milk as a low-attenuation oral contrast agent. Radiology 211:870–875

    PubMed  CAS  Google Scholar 

  15. Koo CW, Shah-Patel LR, Baer JW, Frager DH (2008) Cost-effectiveness and patient tolerance of low-attenuation oral contrast material: milk versus VoLumen. AJR Am J Roentgenol 190:1307–1313

    Article  PubMed  Google Scholar 

  16. Horton KM, Eng J, Fishman EK (2000) Normal enhancement of the small bowel: evaluation with spiral CT. J Compute Assist Tomogr 24:67–71

    Article  CAS  Google Scholar 

  17. Luboldt W, Fletcher JG, Vogl TJ (2002) Colonography: current status, research directions and challenges. Update 2002. Eur Radiol 12:504–524

    Google Scholar 

  18. Landeras LA, Aslam R, Yee J (2007) Virtual colonoscopy: technique and accuracy. Radiol Clin North Am 45:333–345

    Article  PubMed  Google Scholar 

  19. Rogalla P, Werner-Rustner M, Huitema A, et al. (1998) Virtual endoscopy of the small bowel: phantom study and preliminary clinical results. Eur Radiol 8:563–567

    Article  PubMed  CAS  Google Scholar 

  20. Endo K, Utano K, Togashi K, et al. (2010) Virtual enteroscopy using air as the contrast material: a preliminary feasibility study. Dig Endosc 22:205–210

    Article  PubMed  Google Scholar 

  21. Boudiaf M, Jaff A, Soyer P, et al. (2004) Small-bowel diseases: prospective evaluation of multi-detector row helical CT enteroclysis in 107 consecutive patients. Radiology 233:338–344

    Article  PubMed  Google Scholar 

  22. Maglinte DD, Sandrasegaran K, Lappas JC, Chiorean M (2007) CT Enteroclysis. Radiology 245:661–671

    Article  PubMed  Google Scholar 

  23. Yamamoto H, Kita H, Sunada K, et al. (2004) Clinical outcomes of double-balloon enteroscopy for the diagnosis and treatment of small-intestinal diseases. Clin Gastroenterol Hepatol 2:1010–1016

    Article  PubMed  Google Scholar 

  24. Jonnalagdda S, Prakash C (2003) Intestinal Strictures can impede wireless capsule enteroscopy. Gastrointest Endosc 57:418–420

    Article  Google Scholar 

  25. Umschaden HW, Szolar D, Gasser J, Umschaden M, Haselbach H (2000) Small-bowel disease comparison of MR enteroclysis images with conventional enteroclysis and surgical findings. Radiology 215:717–725

    PubMed  CAS  Google Scholar 

  26. Schmidt S, Lepori D, Meuwly JY, et al. (2003) Prospective comparison of MR enteroclysis with multidetector spiral-CT enteroclysis: interobserver agreement and sensitivity by means of “sign-by-sign” correlation. Eur Radiol 13:1303–1311

    PubMed  Google Scholar 

  27. Gourtsoyiannis N, Papanikolaou N, Grammatikakis J, et al. (2004) Assessment of Crohn’s disease activity in the small bowel with MR and conventional enteroclysis: preliminary results. Eur Radiol 14:1017–1024

    Article  PubMed  Google Scholar 

  28. Wiarda BM, Kuipers EJ, Houdijk LP, Tuynman HA (2005) MR enteroclysis: imaging technique of choice in diagnosis of small bowel diseases. Dig Dis Sci 50:1036–1040

    Article  PubMed  Google Scholar 

  29. Gölder SK, Schreyer AG, Endlicher E, et al. (2006) Comparison of capsule endoscopy and magnetic resonance (MR) enteroclysis in suspected small bowel disease. Int J Colorectal Dis 21:97–104

    Article  PubMed  Google Scholar 

  30. Torkzad MR, Vargas R, Tanaka C, Blomqvist L (2007) Value of cine MRI for better visualization of the proximal small bowel in normal individuals. Eur Radiol 17:2964–2968

    Article  PubMed  Google Scholar 

  31. Buhmann-Kirchhoff S, Lang R, Kirchhoff C, et al. (2008) Functional cine MR imaging for the detection and mapping of intraabdominal adhesions: method and surgical correlation. Eur Radiol 18:1215–1223

    Article  PubMed  Google Scholar 

  32. Castiglione F, Rispo A, Cozzolino A, et al. (2007) Bowel sonography in adult celiac disease: diagnostic accuracy and ultrasonographic features. Abdom Imaging 32:73–77

    Article  PubMed  CAS  Google Scholar 

  33. Maconi G, Radice E, Greco S, Bezzio C, Bianchi Porro G (2007) Transient small-bowel intussusceptions in adults: significance of ultrasonographic detection. Clin Radiol 62:792–797

    Article  PubMed  CAS  Google Scholar 

  34. Bozkurt T, Richter F, Lux G (1994) Ultrasonography as a primary diagnostic tool in patients with inflammatory disease and tumours of the small intestine and large bowel. J Clin Ultrasound 22:85–91

    Article  PubMed  CAS  Google Scholar 

  35. Odegaard S, Nesje LB, Hausken T, et al. (2000) Intraluminal sonography in the diagnosis of gastrointestinal diseases. Ultraschall Med 21:47–58

    Article  PubMed  CAS  Google Scholar 

  36. Nylund K, Ødegaard S, Hausken T, et al. (2009) Sonography of the small intestine. World J Gastroenterol 15:1319–1330

    Article  PubMed  Google Scholar 

  37. Blay JY, Bonvalot S, Casali P, et al. (2005) Demetri GD; GIST consensus meeting panelists. Consensus meeting for the management of gastrointestinal stromal tumours. Report of the GIST Consensus Conference of 20–21 March 2004, under the Auspices of ESMO. Ann Oncol 16:566–578

    Article  PubMed  Google Scholar 

  38. Hebert JJ, Taylor AJ, Winter TC, Reichelderfer M, Weichert JP (2006) Low-attenuation oral GI contrast agents in abdominal-pelvic computed tomography. Abdom Imaging 31:48–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Ge, Y., Liang, B. et al. Small intestinal tumors: diagnostic accuracy of enhanced multi-detector CT virtual endoscopy. Abdom Imaging 37, 465–474 (2012). https://doi.org/10.1007/s00261-011-9776-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-011-9776-z

Keywords

Navigation