Skip to main content

Advertisement

Log in

Staging and follow-up of gastrointestinal tumors with PET/CT

  • UPDATE
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) is a functional imaging modality that has been documented to be useful in patient care. Oncologic PET imaging is used for a wide variety of neoplasms, mainly for staging and follow-up, differentiation of equivocal morphologic findings, therapy stratification, and monitoring. Because PET imaging is based on the physiologically mediated distribution of the administered tracer but not on anatomic information, the addition of computed tomography (CT) to PET may improve the interpretation of PET. Combined PET and CT offers several potential advantages over PET alone that may influence the clinical routine. PET/CT was introduced into clinical use only 3 years ago and has found widespread application within only 1 to 2 years. This article summarizes preliminary data of clinical applications for PET/CT in gastrointestinal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams S, Baum R, Rink T, et al. (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 25:79–83

    PubMed  CAS  Google Scholar 

  2. Anderson CD, Rice MH, Pinson CW, et al. (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8:90–97

    PubMed  Google Scholar 

  3. Antoch G, Kanja J, Bauer S, et al. (2004) Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 45:357–365

    PubMed  CAS  Google Scholar 

  4. Antoch G, Saoudi N, Kuehl H, et al. (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 1(22):4357–4368

    Google Scholar 

  5. Avril N (2004) GLUT1 expression in tissue and 18F-FDG uptake. J Nucl Med 45:930–932

    PubMed  CAS  Google Scholar 

  6. Bastiaannet E, Groen H, Jager PL, et al. (2004) The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 30:83–101

    Article  PubMed  CAS  Google Scholar 

  7. Beyer T, Antoch G, Blodgett T, et al. (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596

    Article  PubMed  Google Scholar 

  8. Beyer T, Townsend DW, Brun T, et al. (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    PubMed  CAS  Google Scholar 

  9. Block MI, Sundaresan SR, Patterson GA (1997) Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 64:770–777

    Article  PubMed  CAS  Google Scholar 

  10. Bohm B, Voth M, Geoghegan J, et al. (2004) Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol 130:266–272

    PubMed  CAS  Google Scholar 

  11. Burger I, Goerres GW, Schulthess GK, et al. (2002) PET/CT: diagnostic improvement in recurrent colorectal carcinoma compared to PET alone. Radiology 225(suppl P):242

    Google Scholar 

  12. Charron M, Beyer T, Bohnen NN, et al. (2000) Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 25:905–910

    PubMed  CAS  Google Scholar 

  13. Chen YK, Kao CH, Liao AC, et al. (2003) Colorectal cancer screening in asymptomatic adults: the role of FDG PET scan. Anticancer Res 23(5b):4357–4361

    PubMed  Google Scholar 

  14. Cohade C, Osman M, Leal J, Wahl R (2003) Direct comparison of 18F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803

    PubMed  Google Scholar 

  15. Delbeke D, Rose DM, Chapman WC, et al. (1999) Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 40:1784–1791

    PubMed  CAS  Google Scholar 

  16. De Potter T, Flamen P, Van Cutsem E, et al. (2002) Whole-body PET with FDG for the diagnosis of recurrent gastric cancer. Eur J Nucl Med Mol Imaging 29:525–529

    PubMed  Google Scholar 

  17. Diederichs CG, Staib L, Vogel J, et al. (2000) Values and limitations of 18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116

    PubMed  CAS  Google Scholar 

  18. Even-Sapir E, Parag Y, Lerman H, et al. (2004) Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232:815–822

    PubMed  Google Scholar 

  19. Flamen P, Lerut A, Van Cutsem E (2000) Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol 18:3202–3210

    PubMed  CAS  Google Scholar 

  20. Flanagan FL, Dehdashti F, Siegel BA (1997) Staging of esophageal cancer with FDG-PET. AJR 168:417–424

    PubMed  CAS  Google Scholar 

  21. Franke J, Rosenzweig S, Reinartz P, et al. (2000) Value of positron emission tomography (18F-FDG-PET) in the diagnosis of recurrent rectal cancer. Chirurg 71:80–85

    PubMed  CAS  Google Scholar 

  22. Freudenberg LS, Antoch G, Beyer T, et al. (2003) Diagnosis of labia metastasis by F-18 FDG PET and CT fusion imaging in sarcoma follow-up. Clin Nucl Med 28:636–637

    Article  PubMed  CAS  Google Scholar 

  23. Fritscher-Ravens A, Bohuslavizki KH, Broering DC, et al. (2001) FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun 22:1277–1285

    Article  PubMed  CAS  Google Scholar 

  24. Gayed I, Vu T, Iyer R, et al. (2004) The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45:17–21

    PubMed  CAS  Google Scholar 

  25. Himeno S, Yasuda S, Shimada H (2002) Evaluation of esophageal cancer by positron emission tomography. Jpn J Clin Oncol 32:340–346

    Article  PubMed  Google Scholar 

  26. Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221

    PubMed  Google Scholar 

  27. Hoffmann M, Kletter K, Diemling M, et al. (1999) Positron emission tomography with fluorine-18-2-fluoro-2-deoxy-D-glucose (F18-FDG) does not visualize extranodal B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT)-type. Ann Oncol 10:1185–1189

    Article  PubMed  CAS  Google Scholar 

  28. Hofmann M, Maecke H, Borner R, et al. (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757

    PubMed  CAS  Google Scholar 

  29. Huebner RH, Park JE, Shepard JE, et al. (2000) A meta-analysis of the literature for whole body FDG-PET detection of recurrent colorectal cancer. J Nucl Med 41:1177–1189

    PubMed  CAS  Google Scholar 

  30. Jadvar H, Fischman AJ (2001) Evaluation of pancreatic carcinoma with FDG PET. Abdom Imaging 26:254–259

    Article  PubMed  CAS  Google Scholar 

  31. Jones DR, Parker LA Jr, Detterbeck FC (1999) Inadequacy of computed tomography in assessing patients with esophageal carcinoma after induction chemoradiotherapy. Cancer 85:1026–1032

    PubMed  CAS  Google Scholar 

  32. Kamel EM, Thumsirn M, Truninger K, et al. (2004) FDG Accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med 45:1804–1810

    PubMed  Google Scholar 

  33. Kato H, Miyazaki T, Nakajima M, et al. (2004) Value of positron emission tomography in the diagnosis of recurrent oesophageal carcinoma. Br J Surg 91:1004–1009

    Article  PubMed  CAS  Google Scholar 

  34. Kato H, Miyazaki T, Nakajima M, et al. (2005) The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 1;103:148–156

    Google Scholar 

  35. Keiding S, Hansen SB, Rasmussen HH, et al. (2000) Detection of cholangiocarcinoma in primary sclerosing cholangitis by positron emission tomography. Ugeskr Laeger 7;162:782–785

    Google Scholar 

  36. Khan MA, Combs CS, Brunt EM, et al. (2000) Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 32:792–797

    PubMed  CAS  Google Scholar 

  37. Kim YJ, Yun M, Lee WJ, et al. (2003) Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 30:1467–1472

    PubMed  Google Scholar 

  38. Kinkel K, Lu Y, Both M, et al. (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224:748–756

    PubMed  Google Scholar 

  39. Kluge R, Schmidt F, Caca K, et al. (2001) Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology 33:1029–1035

    Article  PubMed  CAS  Google Scholar 

  40. Kole AC, Plukker JT, Nieweg OE (1998) Positron emission tomography for staging oesophageal and gastroesophageal malignancy. Br J Cancer 74:521–527

    Google Scholar 

  41. Kowalski J, Henze M, Schuhmacher J, et al. (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48

    PubMed  Google Scholar 

  42. Kuehle C, Veit P, Antoch G, et al. (2005) Contrast-enhanced dark lumen PET/CT and MR colonography in a rodent polyp model—initial results with histopathological correlation. AJR Am J Roentgenol 185:1045–1047

    PubMed  Google Scholar 

  43. Kumar R, Xiu Y, Potenta S, et al. (2004) 18F-FDG PET for evaluation of the treatment response in patients with gastrointestinal tract lymphomas. J Nucl Med 45:1796–17803

    PubMed  Google Scholar 

  44. Lemke AJ, Niehues SM, Hosten N, et al. (2004) Retrospective digital image fusion of multidetector CT and 18F-FDG PET: clinical value in pancreatic lesions—a prospective study with 104 patients. J Nucl Med 45:1279–1286

    PubMed  Google Scholar 

  45. Luketich JD, Schauer P, Meltzer CC (1997) The role of positron emission tomography in staging esophageal cancer. Ann Thorac Surg 64:765–769

    Article  PubMed  CAS  Google Scholar 

  46. McAteer D, Wallis F, Couper G (1999) Evaluation of 18F-FDG positron emission tomography in gastric and oesophageal carcinoma. Br J Radiol 72:525–529

    PubMed  CAS  Google Scholar 

  47. Mertz HR, Sechopoulos P, Delbeke D, Leach SD (2000) EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. Gastrointest Endosc 52:367–371

    Article  PubMed  CAS  Google Scholar 

  48. Mochiki E, Kuwano H, Katoh H, et al. (2004) Evaluation of 18F-2- deoxy-2-fluoro-D-glucose positron emission tomography for gastric cancer. World J Surg 28:247–253

    Article  PubMed  Google Scholar 

  49. Nakamoto Y, Chin BB, Cohade C, et al. (2004) PET/CT: artifacts caused by bowel motion. Nucl Med Commun 25:221–225

    PubMed  Google Scholar 

  50. Ott K, Fink U, Becker K, et al. (2003) Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 15(21):4604–4610

    Google Scholar 

  51. Ott K, Weber WA, Fink U, et al. (2003) Fluorodeoxyglucose-positron emission tomography in adenocarcinomas of the distal esophagus and cardia. World J Surg 27:1035–1039

    Article  PubMed  Google Scholar 

  52. Pereira PL, Clasen S, Boss A, et al. (2004) Radiofrequency ablation of liver metastases. Radiologe 44:347–357

    Article  PubMed  CAS  Google Scholar 

  53. Rankin SC, Taylor H, Cook GJR (1998) Computed tomography and positron emission tomography in the pre-operative staging of oesophageal carcinoma. Clin Radiol 53:659–665

    PubMed  CAS  Google Scholar 

  54. Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III,” 21 July and 19 September 2000. Eur J Nucl Med 28:1707–1723

    PubMed  CAS  Google Scholar 

  55. Rodriguez M, Ahlstrom H, Sundin A, et al. (1997) [18F] FDG PET in gastric non-Hodgkin’s lymphoma. Acta Oncol 36:577–584

    Article  PubMed  CAS  Google Scholar 

  56. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 2311:305–332

    Google Scholar 

  57. Rosa F, Meimarakis G, Stahl A, et al. (2004) Colorectal cancer patients before resection of hepatic metastases. Impact of (18) F-FDG PET on detection of extrahepatic disease. Nuklearmedizin 43:135–140

    PubMed  CAS  Google Scholar 

  58. Schaefer NG, Hany TF, Taverna C, et al. (2004) Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging-do we need contrast-enhanced CT? Radiology 232:823–829

    PubMed  Google Scholar 

  59. Schlag PM, Amthauer H, Stroszcynski C, Felix R (2001) Einfluß der Positronenemissionstomographie auf die chirurgische Therapieplanung beim colorectalen Rezidivtumor. Chirurg 72:995–1002

    PubMed  CAS  Google Scholar 

  60. Sperti C, Pasquali C, Decet G, et al. (2005) F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant from benign pancreatic cysts: a prospective study. J Gastrointest Surg 9:22–29

    Article  PubMed  Google Scholar 

  61. Stahl A, Ott K, Weber WA, et al. (2003) FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging 30:288–295

    Article  PubMed  CAS  Google Scholar 

  62. Sundin A, Eriksson B, Bergstrom M, et al. (2004) PET in the diagnosis of neuroendocrine tumors. Ann NY Acad Sci 1014:246–257

    PubMed  CAS  Google Scholar 

  63. Stroobants S, Goeminne J, Seegers M, et al. (2003) 18FDG-positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 39:2012–2020

    Article  PubMed  CAS  Google Scholar 

  64. Tatlidil R, Jadvar H, Bading JR, Conti PS (2002) Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 224:783–787

    PubMed  Google Scholar 

  65. Truong MT, Erasmus JJ, Munden RF, et al. (2004) Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR 183:1127–1132

    PubMed  Google Scholar 

  66. Tutt ANJ, Plunkett TA, Barrington SF, Leslie MD (2004) The reole of positron emission tomography in the management of colorectal cancer. Colorectal Dis 6:2–9

    Article  PubMed  CAS  Google Scholar 

  67. van den Abbeele AD, Badawi RD, Cliche JP (2002) Response to imatinib mesylate (Gleevec) therapy in patients with advanced gastrointestinal stromal tumors (GIST) is demonstrated by F-18-FDG-PET prior to anatomic imaging with CT [abstract]. Radiology 225(suppl):424

    Google Scholar 

  68. van Oosterom AT, Judson I, Verweij J, et al. (2001) Safety and efficacy of imatinib (STI 571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358:1421–1423

    PubMed  Google Scholar 

  69. Watanabe N, Hayashi S, Kato H, et al. (2004) FDG-PET imaging in duodenal cancer. Ann Nucl Med 18:351–353

    PubMed  Google Scholar 

  70. Weber WA, Ott K, Becker K (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of esophagogastric junction by metabolic imaging. J Clin Oncol 19:3058–3065

    PubMed  CAS  Google Scholar 

  71. Yeung HW, Macapinlac H, Karpeh M, et al. (1998) Accuracy of FDG-PET in gastric cancer. Preliminary experience. Clin Positron Imaging 1:213–221

    PubMed  Google Scholar 

  72. Yeung HWD, Macapinlac HA, Mazumdar M (1999) FDG-PET in esophageal cancer: incremental value over computed tomography. Clin Positron Imaging 5:255–260

    Google Scholar 

  73. Yoshioka T, Yamaguchi K, Kubota K, et al. (2003) Evaluation of 18F-FDG PET in patients with a, metastatic, or recurrent gastric cancer. J Nucl Med 44:690–699

    PubMed  CAS  Google Scholar 

  74. Lauren PA (1965) The two main histologic types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 64:31–49

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Rosenbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenbaum, S.J., Stergar, H., Antoch, G. et al. Staging and follow-up of gastrointestinal tumors with PET/CT. Abdom Imaging 31, 25–35 (2006). https://doi.org/10.1007/s00261-005-0031-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-005-0031-3

Keywords

Navigation