Skip to main content
Log in

B-Glycine as a marker for β cell imaging and β cell mass evaluation

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

β cell mass (BCM) and function are essential to the diagnosis and therapy of diabetes. Diabetic patients serve β cell loss is, and damage of β cells leads to severe insulin deficiency. Our understanding of the role of BCM in diabetes progression is extremely limited by lacking efficient methods to evaluate BCM in vivo. In vitro methods of labeling islets, including loading of contrast reagent or integration of exogenous biomarker, require artificial manipulation on islets, of which the clinical application is limited. Imaging methods targeting endogenous biomarkers may solve the above problems. However, traditional reagents targeting GLP-1R and VAMT2 result in a high background of adjacent tissues, complicating the identification of pancreatic signals. Here, we report a non-invasive and quantitative imaging technique by using radiolabeled glycine mimics ([18F]FBG, a boron-trifluoride derivative of glycine) to assay islet function and monitor BCM changes in living animals.

Methods

Glycine derivatives, FBG, FBSa, 2Me-FBG, 3Me-FBG, were successfully synthesized and labeled with 18F. Specificity of glycine derivatives were characterized by in vitro experiment. PET imaging and biodistribution studies were performed in animal models carring GLYT over-expressed cells. In vivo evaluation of BCM with [18F]FBG were performed in STZ (streptozocin) induced T1D (type 1 diabetes) models.

Results

GLYT responds to excess blood glycine levels and transports glycine into islet cells to maintain the activity of the glycine receptor (GLYR). Best PET imaging condition was 80 min after given a total of 240 ~ 250 nmol imaging reagent (a mixture of [18F]FBG and natural glycine) intravenously. [18F]FBG can detect both endogenous and exogenous islets clearly in vivo. When applied to STZ induced T1D mouse models, total uptake of [18F]FBG in the pancreas exhibited a linear correlation with survival BCM.

Conclusion

[18F]FBG targeting the endogenous glycine transporter (GLYT), which is highly expressed on islet cells, avoiding extra modification on islet cells. Meanwhile the highly restricted expression pattern of GLYT excluded the background in adjacent tissues. This [18F]FBG-based imaging technique provides a non-invasive method to quantify BCM in vivo, implying a new evaluation index for diabetic assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123–58. https://doi.org/10.1146/annurev.physiol.68.040104.124723.

    Article  CAS  PubMed  Google Scholar 

  2. Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314(21):1360–8. https://doi.org/10.1056/NEJM198605223142106.

    Article  CAS  PubMed  Google Scholar 

  3. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54(6):1763–9. https://doi.org/10.2337/diabetes.54.6.1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455(7216):1109–13. https://doi.org/10.1038/nature07336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito K, Yaginuma N, Takahashi T. Differential Volumetry of A, B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med. 1979;129(3):273–83. https://doi.org/10.1620/tjem.129.273.

    Article  CAS  PubMed  Google Scholar 

  6. Weir GC, Bonner-Weir S. Islet beta cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci. 2013;1281:92–105. https://doi.org/10.1111/nyas.12031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A. In vivo imaging of islet transplantation. Nat Med. 2006;12(1):144–8. https://doi.org/10.1038/nm1316.

    Article  CAS  PubMed  Google Scholar 

  8. Kim SJ, Doudet DJ, Studenov AR, Nian C, Ruth TJ, Gambhir SS, et al. Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med. 2006;12(12):1423–8. https://doi.org/10.1038/nm1458.

    Article  CAS  PubMed  Google Scholar 

  9. Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med. 2007;13(8):986–91. https://doi.org/10.1038/nm1581.

    Article  CAS  PubMed  Google Scholar 

  10. Virostko J, Henske J, Vinet L, Lamprianou S, Dai C, Radhika A, et al. Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands. Proc Natl Acad Sci U S A. 2011;108(51):20719–24. https://doi.org/10.1073/pnas.1109480108.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu Z, Todorov I, Li L, Bading JR, Li Z, Nair I, et al. In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor. Bioconjug Chem. 2011;22(8):1587–94. https://doi.org/10.1021/bc200132t.

    Article  CAS  PubMed  Google Scholar 

  12. Reiner T, Thurber G, Gaglia J, Vinegoni C, Liew CW, Upadhyay R, et al. Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci U S A. 2011;108(31):12815–20. https://doi.org/10.1073/pnas.1109859108.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moore A, Bonner-Weir S, Weissleder R. Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes. Diabetes. 2001;50(10):2231–6. https://doi.org/10.2337/diabetes.50.10.2231.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31. https://doi.org/10.1038/325529a0.

    Article  CAS  PubMed  Google Scholar 

  15. Lerma J, Zukin RS, Bennett MV. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses. Proc Natl Acad Sci U S A. 1990;87(6):2354–8. https://doi.org/10.1073/pnas.87.6.2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez-Ortiz M, Medina-Santillan R, Martinez-Abundis E, von Drateln CR. Effect of glycine on insulin secretion and action in healthy first-degree relatives of type 2 diabetes mellitus patients. Horm Metab Res. 2001;33(6):358–60.

    Article  CAS  PubMed  Google Scholar 

  17. Yan-Do R, Duong E, Manning Fox JE, Dai X, Suzuki K, Khan S, et al. A Glycine-insulin Autocrine Feedback Loop enhances insulin secretion from human beta-cells and is impaired in type 2 diabetes. Diabetes. 2016;65(8):2311–21. https://doi.org/10.2337/db15-1272.

    Article  CAS  PubMed  Google Scholar 

  18. Yan-Do R, MacDonald PE. Impaired Glycine-mia in type 2 diabetes and potential mechanisms contributing to glucose homeostasis. Endocrinology. 2017;158(5):1064–73. https://doi.org/10.1210/en.2017-00148.

    Article  CAS  PubMed  Google Scholar 

  19. Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC, Sun X, et al. Single-cell transcriptome profiling of human pancreatic islets in Health and Type 2 diabetes. Cell Metab. 2016;24(4):593–607. https://doi.org/10.1016/j.cmet.2016.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gammelsaeter R, Froyland M, Aragon C, Danbolt NC, Fortin D, Storm-Mathisen J, et al. Glycine, GABA and their transporters in pancreatic islets of Langerhans: evidence for a paracrine transmitter interplay. J Cell Sci. 2004;117(Pt 17):3749–58. https://doi.org/10.1242/jcs.01209.

    Article  CAS  PubMed  Google Scholar 

  21. Tsen G, Williams B, Allaire P, Zhou YD, Ikonomov O, Kondova I, et al. Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal. Nat Neurosci. 2000;3(2):126–32. https://doi.org/10.1038/72066.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Chen H, Chen K, Shao Y, Kiesewetter DO, Niu G, et al. Boramino acid as a marker for amino acid transporters. Sci Adv. 2015;1(8):e1500694. https://doi.org/10.1126/sciadv.1500694.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Han Y, Li J, Qin M, Fu Q, Wang C, et al. (18)F-Alanine derivative serves as an ASCT2 marker for Cancer Imaging. Mol Pharm. 2018;15(3):947–54. https://doi.org/10.1021/acs.molpharmaceut.7b00884.

    Article  CAS  PubMed  Google Scholar 

  24. Aubrey KR, Vandenberg RJ. N[3-(4’-fluorophenyl)-3-(4’-phenylphenoxy)propyl]sarcosine (NFPS) is a selective persistent inhibitor of glycine transport. Br J Pharmacol. 2001;134(7):1429–36. https://doi.org/10.1038/sj.bjp.0704381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blumenthal SA. Observations on sodium retention related to insulin treatment of experimental diabetes. Diabetes. 1975;24(7):645–9. https://doi.org/10.2337/diab.24.7.645.

    Article  CAS  PubMed  Google Scholar 

  26. Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AM. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–23. https://doi.org/10.1038/nbt.3211.

    Article  CAS  PubMed  Google Scholar 

  27. WHO. Expert Committee on Diabetes Mellitus: second report. World Health Organ Tech Rep Ser. 1980;646:1–80.

  28. Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1985;727:1–113.

    Google Scholar 

  29. Bellin MD, Barton FB, Heitman A, Harmon JV, Kandaswamy R, Balamurugan AN, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transpl. 2012;12(6):1576–83. https://doi.org/10.1111/j.1600-6143.2011.03977.x.

    Article  CAS  Google Scholar 

  30. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012;35(7):1436–45. https://doi.org/10.2337/dc12-0063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13(5):268–77. https://doi.org/10.1038/nrendo.2016.178.

    Article  CAS  PubMed  Google Scholar 

  32. Shapiro AM, Hao EG, Lakey JR, Yakimets WJ, Churchill TA, Mitlianga PG, et al. Novel approaches toward early diagnosis of islet allograft rejection. Transplantation. 2001;71(12):1709–18. https://doi.org/10.1097/00007890-200106270-00002.

    Article  CAS  PubMed  Google Scholar 

  33. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54(7):2060–9. https://doi.org/10.2337/diabetes.54.7.2060.

    Article  CAS  PubMed  Google Scholar 

  34. Toso C, Zaidi H, Morel P, Armanet M, Andres A, Pernin N, et al. Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation. 2005;79(3):353–5. https://doi.org/10.1097/01.tp.0000149501.50870.9d.

    Article  PubMed  Google Scholar 

  35. Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA. Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther. 2004;6(5):652–9. https://doi.org/10.1089/dia.2004.6.652.

    Article  PubMed  Google Scholar 

  36. Fukuda H, Matsuzawa T, Abe Y, Endo S, Yamada K, Kubota K, et al. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs: [18F]-2-fluoro-2-deoxy-D-mannose: a new tracer for cancer detection. Eur J Nucl Med. 1982;7(7):294–7. https://doi.org/10.1007/bf00253423.

    Article  CAS  PubMed  Google Scholar 

  37. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med. 1990;31(12):1927–32.

    CAS  PubMed  Google Scholar 

  38. Kornblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR. In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol. 2000;18(6):655–60. https://doi.org/10.1038/76509.

    Article  CAS  PubMed  Google Scholar 

  39. Jiyuan Li, Yaxin Shi, Zizhu Zhang, Hui Liu, Lixin Lang, Tong Liu, et al. A metabolically stable boron-derived tyrosine serves as a theranostic agent for positron emission tomography guided boron neutron capture therapy. Bioconjug Chem. 2019;30(11):2870–2878. https://doi.org/10.1021/acs.bioconjchem.9b00578.

  40. Zhu Li, Ziren Kong, Junyi Chen, Jiyuan Li, Nan Li,  Zhi Yang, et al. 18F-Boramino acid PET/CT in healthy volunteers and glioma patients. Eur J Nucl Med Mol Imaging. 2021;48(10):3113–3121. https://doi.org/10.1007/s00259-021-05212-7.

  41. Zhu Li, Junyi Chen, Ziren Kong, Yixin Shi, Mengxin Xu, Bo-Shuai Mu, et al. A bis-boron boramino acid PET tracer for brain tumor diagnosis. Eur J Nucl Med Mol Imag. 2024. https://doi.org/10.1007/s00259-024-06600-5.

Download references

Funding

This study was funded by the Beijing Municipal Natural Science Foundation (Grant No. Z200018), the National Natural Science Foundation of China (Grant No. 22225603), the Ministry of Science and Technology of the People’s Republic of China (Grant Nos. 2021YFA1601400 and 2017YFA0506300), the National Nature Science Foundation of China (Grant No. U1867209), the Special Foundation of Beijing Municipal Education Commission (Grant No. 3500-12020123), Li Ge-Zhao Ning Life Science Youth Research Foundation (LGZNQN202004) and Changping Laboratory to Z.L. We thank the facility support from the Analytical Instrumentation Center of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

Zhibo Liu conceived the study; Yuxiang Han assisted by Hui Liu, Yimin Li performed most of the experiments; Yuxiang Han, Yimin Li and Zhibo Liu analysed the data. Yuxiang Han and Zhibo Liu wrote the manuscript with input from all authors. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhibo Liu.

Ethics declarations

Competing Interests

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, H., Li, Y. et al. B-Glycine as a marker for β cell imaging and β cell mass evaluation. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06712-y

Keywords

Navigation