Skip to main content
Log in

Intraoperative image-guidance during robotic surgery: is there clinical evidence of enhanced patient outcomes?

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

To date, the benefit of image guidance during robot-assisted surgery (IGS) is an object of debate. The current study aims to address the quality of the contemporary body of literature concerning IGS in robotic surgery throughout different surgical specialties.

Methods

A systematic review of all English-language articles on IGS, from January 2013 to March 2023, was conducted using PubMed, Cochrane library’s Central, EMBASE, MEDLINE, and Scopus databases. Comparative studies that tested performance of IGS vs control were included for the quantitative synthesis, which addressed outcomes analyzed in at least three studies: operative time, length of stay, blood loss, surgical margins, complications, number of nodal retrievals, metastatic nodes, ischemia time, and renal function loss. Bias-corrected ratio of means (ROM) and bias-corrected odds ratio (OR) compared continuous and dichotomous variables, respectively. Subgroup analyses according to guidance type (i.e., 3D virtual reality vs ultrasound vs near-infrared fluoresce) were performed.

Results

Twenty-nine studies, based on 11 surgical procedures of three specialties (general surgery, gynecology, urology), were included in the quantitative synthesis. IGS was associated with 12% reduction in length of stay (ROM 0.88; p = 0.03) and 13% reduction in blood loss (ROM 0.87; p = 0.03) but did not affect operative time (ROM 1.00; p = 0.9), or complications (OR 0.93; p = 0.4). IGS was associated with an estimated 44% increase in mean number of removed nodes (ROM 1.44; p < 0.001), and a significantly higher rate of metastatic nodal disease (OR 1.82; p < 0.001), as well as a significantly lower rate of positive surgical margins (OR 0.62; p < 0.001). In nephron sparing surgery, IGS significantly decreased renal function loss (ROM 0.37; p = 0.002).

Conclusions

Robot-assisted surgery benefits from image guidance, especially in terms of pathologic outcomes, namely higher detection of metastatic nodes and lower surgical margins. Moreover, IGS enhances renal function preservation and lowers surgical blood loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The code for the analyses will be made available upon request.

References

  1. Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg [Internet]. 2016 [cited 2023 Dec 5];40:2550–7. Available from: https://pubmed.ncbi.nlm.nih.gov/27177648/

  2. Brassetti A, Ragusa A, Tedesco F, Prata F, Cacciatore L, Iannuzzi A, et al. Robotic surgery in urology: history from PROBOT® to HUGOTM. Sensors (Basel) [Internet]. 2023 [cited 2023 Dec 5];23. Available from: https://pubmed.ncbi.nlm.nih.gov/37631641/

  3. Vidal-Sicart S, Valdés Olmos R, Nieweg OE, Faccini R, Grootendorst MR, Wester HJ, et al. From interventionist imaging to intraoperative guidance: new perspectives by combining advanced tools and navigation with radio-guided surgery. Rev Esp Med Nucl Imagen Mol [Internet]. 2018 [cited 2023 Dec 5];37:28–40. Available from: https://pubmed.ncbi.nlm.nih.gov/28780044/

  4. Jackson RS, Schmalbach CE. New frontiers in surgical innovation. Otolaryngol Clin North Am [Internet]. 2017 [cited 2023 Dec 5];50:733–46. Available from: https://pubmed.ncbi.nlm.nih.gov/28601195/

  5. Porpiglia F, Amparore D, Checcucci E, Autorino R, Manfredi M, Iannizzi G, et al. Current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur Urol Focus [Internet]. 2018 [cited 2023 Dec 5];4:652–6. Available from: https://pubmed.ncbi.nlm.nih.gov/30293946/

  6. Ahern DP, Gibbons D, Schroeder GD, Vaccaro AR, Butler JS. Image-guidance, robotics, and the future of spine surgery. Clin Spine Surg [Internet]. 2020 [cited 2023 Dec 5];33. Available from: https://pubmed.ncbi.nlm.nih.gov/31425306/

  7. Schols RM, Connell NJ, Stassen LPS. Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg [Internet]. 2015 [cited 2023 Dec 5];39:1069–79. Available from: https://pubmed.ncbi.nlm.nih.gov/25522896/

  8. Lubner MG, Gettle LM, Kim DH, Ziemlewicz TJ, Dahiya N, Pickhardt P. Diagnostic and procedural intraoperative ultrasound: technique, tips and tricks for optimizing results. Br J Radiol [Internet]. 2021 [cited 2023 Dec 5];94. Available from: https://pubmed.ncbi.nlm.nih.gov/33684305/

  9. Checcucci E, Amparore D, Fiori C, Manfredi M, Ivano M, Di Dio M, et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J Urol [Internet]. 2020 [cited 2023 Dec 5];38:869–81. Available from: https://pubmed.ncbi.nlm.nih.gov/31456017/

  10. Amparore D, Piramide F, Verri P, Checcucci E, De Cillis S, Piana A, et al. New generation of 3D virtual models with perfusional zones: perioperative assistance for the best pedicle management during robotic partial nephrectomy. Curr Oncol [Internet]. 2023 [cited 2023 Dec 5];30:4021–32. Available from: https://pubmed.ncbi.nlm.nih.gov/37185417/

  11. van der Poel HG, Grivas N, van Leeuwen F. Comprehensive assessment of indocyanine green usage: one tracer, multiple urological applications. Eur Urol Focus [Internet]. 2018 [cited 2023 Dec 5];4:665–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30197043/

  12. Cacciamani GE, Shakir A, Tafuri A, Gill K, Han J, Ahmadi N, et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol [Internet]. 2020 [cited 2023 Dec 5];38:883–96. Available from: https://pubmed.ncbi.nlm.nih.gov/31286194/

  13. Daskalaki D, Aguilera F, Patton K, Giulianotti PC. Fluorescence in robotic surgery. J Surg Oncol [Internet]. 2015 [cited 2024 Jan 28];112:250–6. Available from: https://pubmed.ncbi.nlm.nih.gov/25974861/

  14. Beyer LP, Wiggermann P. Planning and guidance: new tools to enhance the human skills in interventional oncology. Diagn Interv Imaging [Internet]. 2017 [cited 2024 Jan 28];98:583–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28818346/

  15. van der Poel HG, Grivas N, van Leeuwen F. Comprehensive assessment of indocyanine green usage: one tracer, multiple urological applications. Eur Urol Focus [Internet]. 2018 [cited 2024 Jan 28];4:665–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30197043/

  16. PRISMA statement.

  17. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ [Internet]. 2016 [cited 2023 Dec 5];355. Available from: https://pubmed.ncbi.nlm.nih.gov/27733354/

  18. Lanchon C, Arnoux V, Fiard G, Descotes JL, Rambeaud JJ, Lefrancq JB, et al. Super-selective robot-assisted partial nephrectomy using near-infrared flurorescence versus early-unclamping of the renal artery: results of a prospective matched-pair analysis. Int Braz J Urol. 2018;44:53–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111:604–10.

    Article  PubMed  Google Scholar 

  20. Mattevi D, Luciani LG, Mantovani W, Cai T, Chiodini S, Vattovani V, et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J Robot Surg. 2019;13:391–6.

    Article  PubMed  Google Scholar 

  21. Harke N, Schoen G, Schiefelbein F, Heinrich E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: a single-surgeon matched-pair study. World J Urol. 2014;32:1259–65.

    Article  PubMed  Google Scholar 

  22. Ahmadi N, Ashrafi AN, Hartman N, Shakir A, Cacciamani GE, Freitas D, et al. Use of indocyanine green to minimise uretero-enteric strictures after robotic radical cystectomy. BJU Int. 2019;124:302–7.

    Article  CAS  PubMed  Google Scholar 

  23. Grivas N, Wit EMK, Kuusk T, KleinJan GH, Donswijk ML, Van Leeuwen FWB, et al. The impact of adding sentinel node biopsy to extended pelvic lymph node dissection on biochemical recurrence in prostate cancer patients treated with robot-assisted radical prostatectomy. J Nucl Med. 2018;59:204–9.

    Article  CAS  PubMed  Google Scholar 

  24. Harke NN, Godes M, Wagner C, Addali M, Fangmeyer B, Urbanova K, et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol. 2018;36:1817–23.

    Article  PubMed  Google Scholar 

  25. Mazzone E, Dell’Oglio P, Grivas N, Wit E, Donswijk M, Briganti A, et al. Diagnostic value, oncological outcomes and safety profile of image-guided surgery technologies during robot-assisted lymph node dissection with sentinel node biopsy for prostate cancer. J Nucl Med. 2021;62.

  26. Yuan P, Yao K, Zhou Z, Liu J, Li C, Hou W, et al. “Light green up”: indocyanine green fluorescence imaging–guided robotic bilateral inguinal lymphadenectomy by the hypogastric subcutaneous approach for penile cancer. Eur Urol Open Sci. 2022;45:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holloway RW, Gupta S, Stavitzski NM, Zhu X, Takimoto EL, Gubbi A, et al. Sentinel lymph node mapping with staging lymphadenectomy for patients with endometrial cancer increases the detection of metastasis. Gynecol Oncol. 2016;141:206–10.

    PubMed  Google Scholar 

  28. El-Achi V, Burling M, Al-Aker M. Sentinel lymph node biopsy at robotic-assisted hysterectomy for atypical hyperplasia and endometrial cancer. J Robot Surg. 2022;16:1111–5.

    Article  PubMed  Google Scholar 

  29. Yu HW, Chung JW, Yi JW, Song RY, Lee JH, Kwon H, et al. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during BABA robotic thyroidectomy. Surg Endosc. 2017;31:3020–7.

    Article  PubMed  Google Scholar 

  30. Ouyang H, Wang B, Sun B, Cong R, Xia F, Li X. Application of indocyanine green angiography in bilateral axillo-breast approach robotic thyroidectomy for papillary thyroid cancer. Front Endocrinol (Lausanne). 2022;13.

  31. Kim JC, Lee JL, Park SH. Interpretative guidelines and possible indications for indocyanine green fluorescence imaging in robot-assisted sphincter-saving operations. Dis Colon Rectum. 2017;60:376–84.

    Article  PubMed  Google Scholar 

  32. Kim WW, Choi JA, Lee J, Jung JH, Park HY. Fluorescence imaging–guided robotic thyroidectomy and central lymph node dissection. J Surg Res. 2018;231:297–303.

    Article  PubMed  Google Scholar 

  33. Lan YT, Huang KH, Chen PH, Liu CA, Lo SS, Wu CW, et al. A pilot study of lymph node mapping with indocyanine green in robotic gastrectomy for gastric cancer. SAGE Open Med. 2017;5.

  34. Cianchi F, Indennitate G, Paoli B, Ortolani M, Lami G, Manetti N, et al. The clinical value of fluorescent lymphography with indocyanine green during robotic surgery for gastric cancer: a matched cohort study. Available from: https://doi.org/10.1007/s11605-019-04382-y

  35. Tian Y, Lin Y, Guo H, Hu Y, Li Y, Fan L, et al. Safety and efficacy of carbon nanoparticle suspension injection and indocyanine green tracer-guided lymph node dissection during robotic distal gastrectomy in patients with gastric cancer. Surg Endosc. 2022;36:3209–16.

    Article  PubMed  Google Scholar 

  36. Shirk JD, Kwan L, Saigal C. The use of 3-dimensional, virtual reality models for surgical planning of robotic partial nephrectomy. Urology. 2019;125:92–7.

    Article  PubMed  Google Scholar 

  37. Shirk JD, Thiel DD, Wallen EM, Linehan JM, White WM, Badani KK, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes: a randomized clinical trial. JAMA Netw Open. 2019;2.

  38. Kobayashi S, Cho B, Mutaguchi J, Inokuchi J, Tatsugami K, Hashizume M, et al. Surgical navigation improves renal parenchyma volume preservation in robot-assisted partial nephrectomy: a propensity score matched comparative analysis. J Urol. 2020;204:149–56.

    Article  PubMed  Google Scholar 

  39. Michiels C, Khene ZE, Prudhomme T, Boulenger de Hauteclocque A, Cornelis FH, Percot M, et al. 3D-Image guided robotic-assisted partial nephrectomy: a multi-institutional propensity score-matched analysis (UroCCR study 51). World J Urol. 2023;41:303–13.

  40. Cheng S, Li X, Zhu W, Li W, Wang J, Yang J, et al. Real-time navigation by three-dimensional virtual reconstruction models in robot-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction: our initial experience. Transl Androl Urol. 2021;10:125–33.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bianchi L, Chessa F, Angiolini A, Cercenelli L, Lodi S, Bortolani B, et al. The use of augmented reality to guide the intraoperative frozen section during robot-assisted radical prostatectomy. Eur Urol. 2021;80:480–8.

    Article  PubMed  Google Scholar 

  42. Shirk JD, Reiter R, Wallen EM, Pak R, Ahlering T, Badani KK, et al. Effect of 3-dimensional, virtual reality models for surgical planning of robotic prostatectomy on trifecta outcomes: a randomized clinical trial. J Urol. 2022;208:618–25.

    Article  PubMed  Google Scholar 

  43. Checcucci E, Pecoraro A, Amparore D, De Cillis S, Granato S, Volpi G, et al. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy. World J Urol. 2022;40:2221–9.

    Article  PubMed  Google Scholar 

  44. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76:505–14.

    Article  PubMed  Google Scholar 

  45. Sun Y, Wang W, Zhang Q, Zhao X, Xu L, Guo H. Intraoperative ultrasound: technique and clinical experience in robotic-assisted renal partial nephrectomy for endophytic renal tumors. Int Urol Nephrol. 2021;53:455–63.

    Article  PubMed  Google Scholar 

  46. Davila HH, Abdelhameed S, Malave-Huertas D, Bigay FF, Crawford K, Friedenstab A, et al. Ultrasonography and robotic-assisted laparoscopic sacrocervicopexy with pubocervical fascia reconstruction: comparison with standard technique. J Robot Surg. 2020;14:759–66.

    Article  PubMed  Google Scholar 

  47. Mazzone E, Dell’Oglio P, Grivas N, Wit E, Donswijk M, Briganti A, et al. Diagnostic value, oncologic outcomes, and safety profile of image-guided surgery technologies during robot-assisted lymph node dissection with sentinel node biopsy for prostate cancer. J Nucl Med [Internet]. 2021 [cited 2024 Feb 22];62. Available from: https://pubmed.ncbi.nlm.nih.gov/33547208/

  48. Friedrich JO, Adhikari NKJ, Beyene J. Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J Clin Epidemiol. 2011;64:556–64.

    Article  PubMed  Google Scholar 

  49. Friedrich JO, Adhikari NKJ, Beyene J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med Res Methodol. 2008;8:32.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  51. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  52. Shim SR, Kim SJ. Intervention meta-analysis: application and practice using R software. Epidemiol Health. 2019;41: e2019008.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R: The R Project for Statistical Computing [Internet]. [cited 2022 Apr 14]. Available from: https://www.r-project.org/

  55. Mascagni P, Alapatt D, Sestini L, Altieri MS, Madani A, Watanabe Y, et al. Computer vision in surgery: from potential to clinical value. NPJ Digit Med [Internet]. 2022 [cited 2023 Dec 5];5. Available from: https://pubmed.ncbi.nlm.nih.gov/36307544/

  56. Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol [Internet]. 2019 [cited 2023 Dec 5];20:e354–67. Available from: https://pubmed.ncbi.nlm.nih.gov/31267970/

  57. Dell’Oglio P, Meershoek P, Maurer T, Wit EMK, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79:124–32.

    Article  PubMed  Google Scholar 

  58. Dell’Oglio P, de Vries HM, Mazzone E, KleinJan GH, Donswijk ML, van der Poel HG, et al. Hybrid indocyanine green-99mTc-nanocolloid for single-photon emission computed tomography and combined radio- and fluorescence-guided sentinel node biopsy in penile cancer: results of 740 inguinal basins assessed at a single institution. Eur Urol [Internet]. 2020 [cited 2024 Jan 28];78:865–72. Available from: https://pubmed.ncbi.nlm.nih.gov/32950298/

  59. Gioux S, Choi HS, Frangioni J V. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging [Internet]. 2010 [cited 2023 Dec 5];9:237. Available from: /pmc/articles/PMC3105445/

  60. van Manen L, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AL, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol [Internet]. 2018 [cited 2023 Dec 5];118:283–300. Available from: https://pubmed.ncbi.nlm.nih.gov/29938401/

  61. Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol [Internet]. 2012 [cited 2023 Dec 5];188:58–62. Available from: https://pubmed.ncbi.nlm.nih.gov/22583635/

  62. Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery [Internet]. 2015 [cited 2023 Dec 5];77:663–73. Available from: https://pubmed.ncbi.nlm.nih.gov/26308630/

  63. Dell’Oglio P, de Vries HM, Mazzone E, KleinJan GH, Donswijk ML, van der Poel HG, et al. Hybrid indocyanine green-99mTc-nanocolloid for single-photon emission computed tomography and combined radio- and fluorescence-guided sentinel node biopsy in penile cancer: results of 740 inguinal basins assessed at a single institution. Eur Urol [Internet]. 2020 [cited 2023 Dec 5];78:865–72. Available from: https://pubmed.ncbi.nlm.nih.gov/32950298/

  64. Fallara G, Pozzi E, Onur Cakir O, Tandogdu Z, Castiglione F, Salonia A, et al. Diagnostic accuracy of dynamic sentinel lymph node biopsy for penile cancer: a systematic review and meta-analysis. Eur Urol Focus [Internet]. 2023 [cited 2023 Dec 5];9:500–12. Available from: https://pubmed.ncbi.nlm.nih.gov/36470729/

  65. Odenthal J, Rijpkema M, Bos D, Wagena E, Croes H, Grenman R, et al. Targeting CD44v6 for fluorescence-guided surgery in head and neck squamous cell carcinoma. Sci Rep [Internet]. 2018 [cited 2023 Dec 5];8. Available from: https://pubmed.ncbi.nlm.nih.gov/29992954/

  66. Boonstra MC, Van Driel PBAA, Keereweer S, Prevoo HAJM, Stammes MA, Baart VM, et al. Preclinical uPAR-targeted multimodal imaging of locoregional oral cancer. Oral Oncol [Internet]. 2017 [cited 2023 Dec 5];66:1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28249642/

  67. Lwin TM, Miyake K, Murakami T, DeLong JC, Amirfakhri S, Filemoni F, et al. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget [Internet]. 2018 [cited 2023 Dec 5];9:37333–42. Available from: https://pubmed.ncbi.nlm.nih.gov/30647873/

  68. van Driel PBAA, Boonstra MC, Prevoo HAJM, van de Giessen M, Snoeks TJA, Tummers QRJG, et al. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery. BMC Cancer [Internet]. 2016 [cited 2023 Dec 5];16. Available from: https://pubmed.ncbi.nlm.nih.gov/27842504/

  69. Sonn GA, Behesnilian AS, Jiang ZK, Zettlitz KA, Lepin EJ, Bentolila LA, et al. Fluorescent image-guided surgery with an anti-prostate stem cell antigen (PSCA) diabody enables targeted resection of mouse prostate cancer xenografts in real time. Clin Cancer Res [Internet]. 2016 [cited 2023 Dec 5];22:1403–12. Available from: https://pubmed.ncbi.nlm.nih.gov/26490315/

  70. Nishio N, van den Berg NS, van Keulen S, Martin BA, Fakurnejad S, Zhou Q, et al. Optimal dosing strategy for fluorescence-guided surgery with panitumumab-IRDye800CW in head and neck cancer. Mol Imaging Biol [Internet]. 2020 [cited 2024 Feb 18];22:156–64. Available from: https://pubmed.ncbi.nlm.nih.gov/31054001/

  71. Boogerd LSF, Hoogstins CES, Schaap DP, Kusters M, Handgraaf HJM, van der Valk MJM, et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol [Internet]. 2018 [cited 2024 Feb 18];3:181–91. Available from: https://pubmed.ncbi.nlm.nih.gov/29361435/

  72. Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, Mieog JSD, Swijnenburg RJ, van de Velde CJH, et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann Surg Oncol [Internet]. 2018 [cited 2024 Feb 18];25:3350–7. Available from: https://pubmed.ncbi.nlm.nih.gov/30051369/

  73. Schaap DP, de Valk KS, Deken MM, Meijer RPJ, Burggraaf J, Vahrmeijer AL, et al. Carcinoembryonic antigen-specific, fluorescent image-guided cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Br J Surg [Internet]. 2020 [cited 2024 Feb 18];107:334–7. Available from: https://pubmed.ncbi.nlm.nih.gov/31960953/

  74. de Gooyer JM, Elekonawo FMK, Bremers AJA, Boerman OC, Aarntzen EHJG, de Reuver PR, et al. Multimodal CEA-targeted fluorescence and radioguided cytoreductive surgery for peritoneal metastases of colorectal origin. Nat Commun [Internet]. 2022 [cited 2024 Feb 18];13. Available from: https://pubmed.ncbi.nlm.nih.gov/35551444/

  75. de Valk KS, Deken MM, Schaap DP, Meijer RP, Boogerd LS, Hoogstins CE, et al. Dose-finding study of a CEA-targeting agent, SGM-101, for intraoperative fluorescence imaging of colorectal cancer. Ann Surg Oncol [Internet]. 2021 [cited 2024 Feb 18];28:1832–44. Available from: https://pubmed.ncbi.nlm.nih.gov/33034788/

  76. Zuur LG, de Barros HA, van Oosterom MN, Berrens A, Donswijk ML, Hendrikx JJMA, et al. 99m TcPSMA-radioguided surgery in oligorecurrent prostate cancer: the randomised TRACE-II trial. BJU Int [Internet]. 2024 [cited 2024 Feb 18]; Available from: https://pubmed.ncbi.nlm.nih.gov/38346924/

  77. de Valk KS, Deken MM, Handgraaf HJM, Bhairosingh SS, Bijlstra OD, van Esdonk MJ, et al. First-in-human assessment of cRGD-ZW800–1, a zwitterionic, integrin-targeted, near-infrared fluorescent peptide in colon carcinoma. Clin Cancer Res [Internet]. 2020 [cited 2024 Feb 18];26:3990–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32345649/

  78. Tonutti M, Elson DS, Yang GZ, Darzi AW, Sodergren MH. The role of technology in minimally invasive surgery: state of the art, recent developments and future directions. Postgrad Med J [Internet]. 2017 [cited 2023 Dec 5];93:159–67. Available from: https://pubmed.ncbi.nlm.nih.gov/27879411/

  79. Autorino R, Zargar H, White WM, Novara G, Annino F, Perdonà S, et al. Current applications of near-infrared fluorescence imaging in robotic urologic surgery: a systematic review and critical analysis of the literature. Urology [Internet]. 2014 [cited 2024 Jan 28];84:751–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25260441/

  80. Manny TB, Krane LS, Hemal AK. Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J Endourol [Internet]. 2013 [cited 2024 Jan 28];27:918–21. Available from: https://pubmed.ncbi.nlm.nih.gov/23442199/

  81. Angell JE, Khemees TA, Abaza R. Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy. J Urol [Internet]. 2013 [cited 2024 Jan 28];190:1668–73. Available from: https://pubmed.ncbi.nlm.nih.gov/23643597/

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: PDO, EM, ST.

Literature search: ST, FC, AM, FA, RD, AD, EP, AL, ML, MLP, FB, LA.

Title and abstract screening: ST, FC, AM, FA, RD, AD, EP, AL, ML, MLP, FB.

Full text screening: ST, FC, AM, FA, RD, AD, EP, AL, ML, MLP, FB.

Data extraction: ST, FC, EP, LA.

Analysis/interpretation of data: PDO, EM, CAB, GF.

Statistical analysis: PDO, EM, GF.

Drafting the manuscript: ST, GF, FC, EM, PDO.

Critically revising the manuscript: All authors discussed the results and implications and commented on the manuscript at all stages.

Final approval of the manuscript: All authors.

Corresponding author

Correspondence to Paolo Dell’Oglio.

Ethics declarations

Ethics consent

Study-specific Institutional Review Board ethics approval was not required.

Patient consent statement, permission to reproduce material from other sources and clinical trial registration

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ST and GF share first authorship.

EM and PDO share last authorship.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tappero, S., Fallara, G., Chierigo, F. et al. Intraoperative image-guidance during robotic surgery: is there clinical evidence of enhanced patient outcomes?. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06706-w

Keywords

Navigation