Skip to main content

Advertisement

Log in

Development of probes for radiotheranostics with albumin binding moiety to increase the therapeutic effects of astatine-211 (211At)

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We have developed probes for multiradionuclides radiotheranostics using RGD peptide ([67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]1) and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]2)) for clinical applications. The introduction of an albumin binding moiety (ABM), such as 4-(4-iodophenyl)-butyric acid (IPBA), that has high affinity with the blood albumin and prolongs the circulation half-life can improve the pharmacokinetics of drugs. To perform more effective targeted alpha therapy (TAT), we designed and synthesized Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]5) with 4-(4-astatophenyl)-butyric acid (APBA), which has an astato group instead of an iodo group in IPBA. We evaluated whether APBA functions as ABM and [211At]5 is effective for TAT. In addition, we prepared 67Ga-labeled RGD peptide without ABM, [67Ga]Ga-DOTA-K-c(RGDfK) ([67Ga]3), and 125I-labeled RGD peptide with ABM, Ga-DOTA-K([125I]IPBA)-c(RGDfK) ([125I]4), to compare with [211At]5.

Methods

Biodistribution experiments of [67Ga]3 without ABM, [125I]4 and [211At]5 with ABM were conducted in normal mice and U-87 MG tumor-bearing mice. In addition, two doses of [211At]5 (370 or 925 kBq) were administered to U-87 MG tumor-bearing mice to confirm the therapeutic effects.

Results

The blood retention of [125I]4 and [211At]5 was remarkably increased compared to [67Ga]3. Also, [125I]4 and [211At]5 showed similar biodistribution and significantly greater tumor accumulation and retention compared to [67Ga]3. In addition, [211At]5 inhibited tumor growth in a dose-dependent manner.

Conclusion

The functionality of APBA as ABM like IPBA, and the usefulness of [211At]5 as the radionuclide therapy agent for TAT was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available from the corresponding author on reasonable request.

References

  1. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22:1879–903. https://doi.org/10.1021/bc200151q.

    Article  CAS  Google Scholar 

  2. Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 2020;21:e146–56. https://doi.org/10.1016/S1470-2045(19)30821-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ogawa K. Development of diagnostic and therapeutic probes with controlled pharmacokinetics for use in radiotheranostics. Chem Pharm Bull (Tokyo). 2019;67:897–903. https://doi.org/10.1248/cpb.c19-00274.

    Article  CAS  PubMed  Google Scholar 

  4. Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: design, development strategies, and medical applications. Coord Chem Rev. 2019;383:104–31. https://doi.org/10.1016/j.ccr.2018.12.005.

    Article  CAS  Google Scholar 

  5. Targeted Alpha Therapy Working G, Parker C, Lewington V, Shore N, Kratochwil C, Levy M, et al. Targeted alpha therapy, an emerging class of cancer agents: a review. JAMA Oncol. 2018;4:1765–72. https://doi.org/10.1001/jamaoncol.2018.4044.

  6. Nelson BJB, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry, and applications. Pharmaceutics. 2021;13(1):49. https://doi.org/10.3390/pharmaceutics13010049.

  7. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des. 2000;6:1433–55. https://doi.org/10.2174/1381612003399275.

    Article  CAS  PubMed  Google Scholar 

  8. Watabe T, Liu Y, Kaneda-Nakashima K, Sato T, Shirakami Y, Ooe K, et al. Comparison of the therapeutic effects of [211At]NaAt and [131I]NaI in an NIS-expressing thyroid cancer mouse model. Int J Mol Sci. 2022;23(16):9434. https://doi.org/10.3390/ijms23169434.

  9. Watabe T, Kaneda-Nakashima K, Shirakami Y, Kadonaga Y, Ooe K, Wang Y, et al. Targeted alpha-therapy using astatine 211At-labeled PSMA1, 5, and 6: a preclinical evaluation as a novel compound. Eur J Nucl Med Mol Imaging. 2022. https://doi.org/10.1007/s00259-022-06016-z.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ohshima Y, Sudo H, Watanabe S, Nagatsu K, Tsuji AB, Sakashita T, et al. Antitumor effects of radionuclide treatment using alpha-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur J Nucl Med Mol Imaging. 2018;45:999–1010. https://doi.org/10.1007/s00259-017-3919-6.

    Article  CAS  PubMed Central  Google Scholar 

  11. Ogawa K, Echigo H, Mishiro K, Hirata S, Washiyama K, Kitamura Y, et al. 68Ga- and 211At-Labeled RGD peptides for radiotheranostics with multiradionuclides. Mol Pharm. 2021;18:3553–62. https://doi.org/10.1021/acs.molpharmaceut.1c00460.

    Article  CAS  Google Scholar 

  12. Lau J, Jacobson O, Niu G, Lin KS, Benard F, Chen X. Bench to bedside: albumin binders for improved cancer radioligand therapies. Bioconjug Chem. 2019;30:487–502. https://doi.org/10.1021/acs.bioconjchem.8b00919.

    Article  CAS  PubMed  Google Scholar 

  13. Dumelin CE, Trussel S, Buller F, Trachsel E, Bootz F, Zhang Y, et al. A portable albumin binder from a DNA-encoded chemical library. Angew Chem Int Ed Engl. 2008;47:3196–201. https://doi.org/10.1002/anie.200704936.

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Jacobson O, Niu G, Weiss ID, Kiesewetter DO, Liu Y, et al. Novel “add-on” molecule based on evans blue confers superior pharmacokinetics and transforms drugs to theranostic agents. J Nucl Med. 2017;58:590–7. https://doi.org/10.2967/jnumed.116.182097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iikuni S, Tarumizu Y, Nakashima K, Higaki Y, Ichikawa H, Watanabe H, et al. Radiotheranostics using a novel 225Ac-labeled radioligand with improved pharmacokinetics targeting prostate-specific membrane antigen. J Med Chem. 2021;64:13429–38. https://doi.org/10.1021/acs.jmedchem.1c00772.

    Article  CAS  PubMed  Google Scholar 

  16. Yang G, Gao H, Luo C, Zhao X, Luo Q, Shi J, et al. Palmitic Acid-Conjugated Radiopharmaceutical for Integrin αvβ3-Targeted Radionuclide Therapy. Pharmaceutics. 2022;14(7):1327. https://doi.org/10.3390/pharmaceutics14071327.

  17. Höltke C, Alsibai W, Grewer M, Stölting M, Geyer C, Eisenblätter M, et al. How different albumin-binders drive probe distribution of fluorescent RGD mimetics. Front Chem. 2021;9: 689850. https://doi.org/10.3389/fchem.2021.689850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aoki M, Zhao S, Takahashi K, Washiyama K, Ukon N, Tan C, et al. Preliminary evaluation of Astatine-211-Labeled bombesin derivatives for targeted alpha therapy. Chem Pharm Bull (Tokyo). 2020;68:538–45. https://doi.org/10.1248/cpb.c20-00077.

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa K, Mizuno Y, Washiyama K, Shiba K, Takahashi N, Kozaka T, et al. Preparation and evaluation of an astatine-211-labeled sigma receptor ligand for alpha radionuclide therapy. Nucl Med Biol. 2015;42:875–9. https://doi.org/10.1016/j.nucmedbio.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  20. Effendi N, Mishiro K, Shiba K, Kinuya S, Ogawa K. Development of radiogallium-labeled peptides for platelet-derived growth factor receptor beta (PDGFRbeta) imaging: influence of different linkers. Molecules. 2021;26(1):41. https://doi.org/10.3390/molecules26010041.

  21. Benesova M, Umbricht CA, Schibli R, Muller C. Albumin-binding PSMA ligands: optimization of the tissue distribution profile. Mol Pharm. 2018;15:934–46. https://doi.org/10.1021/acs.molpharmaceut.7b00877.

    Article  CAS  Google Scholar 

  22. Ogawa K, Yu J, Ishizaki A, Yokokawa M, Kitamura M, Kitamura Y, et al. Radiogallium complex-conjugated bifunctional peptides for detecting primary cancer and bone metastases simultaneously. Bioconjug Chem. 2015;26:1561–70. https://doi.org/10.1021/acs.bioconjchem.5b00186.

    Article  CAS  PubMed  Google Scholar 

  23. Chen H, Niu G, Wu H, Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6:78–92. https://doi.org/10.7150/thno.13242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ogawa K, Takeda T, Mishiro K, Toyoshima A, Shiba K, Yoshimura T, et al. Radiotheranostics coupled between an At-211-Labeled RGD peptide and the corresponding radioiodine-labeled RGD peptide. ACS Omega. 2019;4:4584–91. https://doi.org/10.1021/acsomega.8b03679.

    Article  CAS  Google Scholar 

  25. Echigo H, Mishiro K, Fuchigami T, Shiba K, Kinuya S, Ogawa K. Synthesis and evaluation of a dimeric RGD peptide as a preliminary study for radiotheranostics with radiohalogens. Molecules. 2021;26(20):6107. https://doi.org/10.3390/molecules26206107.

  26. Echigo H, Mishiro K, Munekane M, Fuchigami T, Kitamura Y, Kinuya S, et al. Development and evaluation of a theranostic probe with RGD peptide introduced platinum complex to enable tumor-specific accumulation. Bioorg Med Chem. 2022;70: 116919. https://doi.org/10.1016/j.bmc.2022.116919.

    Article  CAS  PubMed  Google Scholar 

  27. Mishiro K, Ueno T, Wakabayashi H, Fukui M, Kinuya S, Ogawa K. Synthesis and evaluation of a deltic guanidinium analogue of a cyclic RGD peptide. Org Biomol Chem. 2023;21:1937–41. https://doi.org/10.1039/d3ob00089c.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki H, Kaizuka Y, Tatsuta M, Tanaka H, Washiya N, Shirakami Y, et al. Neopentyl glycol as a scaffold to provide radiohalogenated theranostic pairs of high in vivo stability. J Med Chem. 2021;64:15846–57. https://doi.org/10.1021/acs.jmedchem.1c01147.

    Article  CAS  PubMed  Google Scholar 

  29. Lindegren S, Albertsson P, Back T, Jensen H, Palm S, Aneheim E. Realizing clinical trials with Astatine-211: the chemistry infrastructure. Cancer Biother Radiopharm. 2020;35:425–36. https://doi.org/10.1089/cbr.2019.3055.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Larsen RH, Slade S, Zalutsky MR. Blocking [211At]astatide accumulation in normal tissues: preliminary evaluation of seven potential compounds. Nucl Med Biol. 1998;25:351–7. https://doi.org/10.1016/s0969-8051(97)00230-8.

    Article  CAS  PubMed  Google Scholar 

  31. Iikuni S, Okada Y, Shimizu Y, Watanabe H, Ono M. Modulation of the pharmacokinetics of a radioligand targeting carbonic Anhydrase-IX with albumin-binding moieties. Mol Pharm. 2021;18:966–75. https://doi.org/10.1021/acs.molpharmaceut.0c00953.

    Article  CAS  Google Scholar 

  32. Mishiro K, Imai S, Ematsu Y, Hirose K, Fuchigami T, Munekane M, et al. RGD peptide-conjugated dodecaborate with the Ga-DOTA complex: a preliminary study for the development of theranostic agents for boron neutron capture therapy and its companion diagnostics. J Med Chem. 2022;65:16741–53. https://doi.org/10.1021/acs.jmedchem.2c01586.

    Article  CAS  PubMed  Google Scholar 

  33. Yoshimoto M, Ogawa K, Washiyama K, Shikano N, Mori H, Amano R, et al. αvβ3 Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer. 2008;123:709–15. https://doi.org/10.1002/ijc.23575.

    Article  CAS  Google Scholar 

  34. Pirooznia N, Abdi K, Beiki D, Emami F, Arab SS, Sabzevari O, et al. 177Lu-labeled cyclic RGD peptide as an imaging and targeted radionuclide therapeutic agent in non-small cell lung cancer: Biological evaluation and preclinical study. Bioorg Chem. 2020;102: 104100. https://doi.org/10.1016/j.bioorg.2020.104100.

    Article  CAS  PubMed  Google Scholar 

  35. Parihar AS, Sood A, Kumar R, Bhusari P, Shukla J, Mittal BR. Novel use of 177Lu-DOTA-RGD2 in treatment of 68Ga-DOTA-RGD2-avid lesions in papillary thyroid cancer with TENIS. Eur J Nucl Med Mol Imaging. 2018;45:1836–7. https://doi.org/10.1007/s00259-018-4036-x.

    Article  CAS  PubMed  Google Scholar 

  36. Vatsa R, Sood A. Theranostic role of radiolabelled RGD peptide in the treatment of radioiodine-resistant thyroid cancer: a novel agent. Indian J Med Res. 2020;152:S258–9. https://doi.org/10.4103/ijmr.IJMR_2377_19.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Watabe T, Kaneda-Nakashima K, Ooe K, Liu Y, Kurimoto K, Murai T, et al. Extended single-dose toxicity study of [211At]NaAt in mice for the first-in-human clinical trial of targeted alpha therapy for differentiated thyroid cancer. Ann Nucl Med. 2021;35:702–18. https://doi.org/10.1007/s12149-021-01612-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sathekge M, Bruchertseifer F, Vorster M, Lawal IO, Knoesen O, Mahapane J, et al. Predictors of overall and disease-free survival in metastatic castration-resistant prostate cancer patients receiving 225Ac-PSMA-617 radioligand therapy. J Nucl Med. 2020;61:62–9. https://doi.org/10.2967/jnumed.119.229229.

    Article  CAS  PubMed  Google Scholar 

  39. Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30. https://doi.org/10.1200/jco.2007.15.2553.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by Grants-in-Aid for Scientific Research (21H02867) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, The Mitani Foundation for Research and Development, the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science, and JST SPRING (JPMJSP2135).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hiroaki Echigo and Kazuma Ogawa. Methodology: Hiroaki Echigo, Kenji Mishiro, Masayuki Munekane, Takeshi Fuchigami, and Kazuma Ogawa. Analysis: Hiroaki Echigo, Kenji Mishiro, and Kazuma Ogawa. Writing — original draft preparation: Hiroaki Echigo and Kazuma Ogawa. Writing — review and editing: Kenji Mishiro, Masayuki Munekane, Takeshi Fuchigami, and Kazuma Ogawa. Funding acquisition: Kazuma Ogawa. Resources: Kohshin Washiyama, Kazuhiro Takahashi, Yoji Kitamura, Hiroshi Wakabayashi, and Seigo Kinuya. Supervision: Kenji Mishiro and Kazuma Ogawa. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Kazuma Ogawa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

Experiments with animals were conducted in strict accordance with the Guidelines for the Care and Use of Laboratory Animals of Kanazawa University. The experimental protocols were approved by the Committee on Animal Experimentation of Kanazawa University. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 303 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echigo, H., Mishiro, K., Munekane, M. et al. Development of probes for radiotheranostics with albumin binding moiety to increase the therapeutic effects of astatine-211 (211At). Eur J Nucl Med Mol Imaging 51, 412–421 (2024). https://doi.org/10.1007/s00259-023-06457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06457-0

Keywords

Navigation