Skip to main content

Advertisement

Log in

Differences in whole-brain metabolism are associated with the expression of genes related to neurovascular unit integrity and synaptic plasticity in temporal lobe epilepsy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Temporal lobe epilepsy (TLE) is a common, polygenic epilepsy syndrome that involves glucose hypometabolism in the epileptogenic zone. However, the transcriptional and cellular signatures underlying the metabolism in TLE remain unclear.

Methods

In this retrospective study, 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) scans of TLE patients (n = 104) who underwent anterior temporal lobectomy were consecutively collected between 2016 and 2021. The transcriptional profiles of TLE risk genes across the brain were identified by the gene expression analyses from six TLE patients and twelve postmortem donors (six from the Allen Human Brain Atlas). Integrating the neuroimaging and transcriptomic data, we examined the relationship between the expression of TLE-associated genes and metabolic alterations in TLE. Furthermore, we performed functional enrichment analyses of the genes with higher weight in partial least squares regression using Metascape.

Results

A total of 104 patients with TLE (mean age 29 ± 9 years, 50% male) and 30 healthy controls (HCs) (mean age 31 ± 6 years, 53% male) were enrolled. Compared to that of HCs, patients with TLE showed hypometabolism in the temporal lobes and adjacent structures but hypermetabolism in the thalamus and basal ganglia. The cortical map of inter-group differences in cerebral metabolism was spatially correlated with the expression of a weighted combination of genes enriched in ontology terms and pathways related to neurovascular unit (NVU) integrity and synaptic plasticity.

Discussion

Our findings, combined with the analysis of neuroimaging and transcriptional data, suggest that genes related to NVU integrity and synaptic plasticity may drive alterations to brain metabolism that mediate the genetic risk of TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Code is available from the corresponding author on reasonable request.

References

  1. Hauser RM, Henshall DC, Lubin FD. The epigenetics of epilepsy and its progression. Neuroscientist. 2018;24:186–200. https://doi.org/10.1177/1073858417705840.

    Article  CAS  PubMed  Google Scholar 

  2. Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, et al. Genetic landscape of common epilepsies: advancing towards precision in treatment. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21207784.

  3. Barba C, Rheims S, Minotti L, Guénot M, Hoffmann D, Chabardès S, et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain. 2016;139:444–51. https://doi.org/10.1093/brain/awv372.

    Article  PubMed  Google Scholar 

  4. Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, et al. Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex. 2007;17:2007–18. https://doi.org/10.1093/cercor/bhl109.

    Article  PubMed  Google Scholar 

  5. Li R, Deng C, Wang X, Zou T, Biswal B, Guo D, et al. Interictal dynamic network transitions in mesial temporal lobe epilepsy. Epilepsia. 2022. https://doi.org/10.1111/epi.17325.

    Article  PubMed  PubMed Central  Google Scholar 

  6. González HFJ, Chakravorti S, Goodale SE, Gupta K, Claassen DO, Dawant B, et al. Thalamic arousal network disturbances in temporal lobe epilepsy and improvement after surgery. J Neurol Neurosurg Psychiatry. 2019;90:1109–16. https://doi.org/10.1136/jnnp-2019-320748.

    Article  PubMed  Google Scholar 

  7. Cauda F, Nani A, Manuello J, Premi E, Palermo S, Tatu K, et al. Brain structural alterations are distributed following functional, anatomic and genetic connectivity. Brain. 2018;141:3211–32. https://doi.org/10.1093/brain/awy252.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP. Variability in fMRI: an examination of intersession differences. Neuroimage. 2000;11:708–34. https://doi.org/10.1006/nimg.2000.0562.

    Article  CAS  PubMed  Google Scholar 

  9. Dlugos DJ, Jaggi J, O’Connor WM, Ding XS, Reivich M, O’Connor MJ, et al. Hippocampal cell density and subcortical metabolism in temporal lobe epilepsy. Epilepsia. 1999;40:408–13. https://doi.org/10.1111/j.1528-1157.1999.tb00734.x.

    Article  CAS  PubMed  Google Scholar 

  10. Vielhaber S, Von Oertzen JH, Kudin AF, Schoenfeld A, Menzel C, Biersack HJ, et al. Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy. Epilepsia. 2003;44:193–9. https://doi.org/10.1046/j.1528-1157.2003.38102.x.

    Article  CAS  PubMed  Google Scholar 

  11. Nho K, Nudelman K, Allen M, Hodges A, Kim S, Risacher SL, et al. Genome-wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer’s pathology. Alzheimers Dement. 2020;16:1213–23. https://doi.org/10.1002/alz.12092.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts AL, et al. Canonical genetic signatures of the adult human brain. Nat Neurosci. 2015;18:1832–44. https://doi.org/10.1038/nn.4171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richiardi J, Altmann A, Milazzo AC, Chang C, Chakravarty MM, Banaschewski T, et al. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science. 2015;348:1241-4. https://doi.org/10.1126/science.1255905.

  14. Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza C, et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci U S A. 2019;116:9604–9. https://doi.org/10.1073/pnas.1820754116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Seidlitz J, Suckling J, Fan F, Ji GJ, Meng Y, et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat Commun. 2021;12:1647. https://doi.org/10.1038/s41467-021-21943-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:522–30. https://doi.org/10.1111/epi.13670.

    Article  PubMed  Google Scholar 

  17. Lordick F, Ott K, Krause BJ, Weber WA, Becker K, Stein HJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8:797–805. https://doi.org/10.1016/s1470-2045(07)70244-9.

    Article  PubMed  Google Scholar 

  18. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11s–20s. https://doi.org/10.2967/jnumed.108.057182.

    Article  CAS  PubMed  Google Scholar 

  19. Silva-Rodríguez J, García-Varela L, López-Arias E, Domínguez-Prado I, Cortés J, Pardo-Montero J, et al. Impact of benzodiazepines on brain FDG-PET quantification after single-dose and chronic administration in rats. Nucl Med Biol. 2016;43:827–34. https://doi.org/10.1016/j.nucmedbio.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  20. López-González FJ, Silva-Rodríguez J, Paredes-Pacheco J, Niñerola-Baizán A, Efthimiou N, Martín-Martín C, et al. Intensity normalization methods in brain FDG-PET quantification. Neuroimage. 2020;222:117229. https://doi.org/10.1016/j.neuroimage.2020.117229.

    Article  CAS  PubMed  Google Scholar 

  21. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex. 2016;26:3508–26. https://doi.org/10.1093/cercor/bhw157.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shen EH, Overly CC, Jones AR. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci. 2012;35:711–4. https://doi.org/10.1016/j.tins.2012.09.005.

    Article  CAS  PubMed  Google Scholar 

  23. Arnatkeviciute A, Fulcher BD, Fornito A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage. 2019;189:353–67. https://doi.org/10.1016/j.neuroimage.2019.01.011.

    Article  PubMed  Google Scholar 

  24. Markello RD, Arnatkeviciute A, Poline JB, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife. 2021;10. https://doi.org/10.7554/eLife.72129.

  25. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9. https://doi.org/10.1038/nature11405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosipal R, Krämer N. Overview and recent advances in partial least squares. In: Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J, editors. Subspace, Latent Structure and Feature Selection. Berlin: Springer, Berlin Heidelberg; 2006. p. 34–51.

    Chapter  Google Scholar 

  27. Váša F, Seidlitz J, Romero-Garcia R, Whitaker KJ, Rosenthal G, Vértes PE, et al. Adolescent tuning of association cortex in human structural brain networks. Cereb Cortex. 2018;28:281–94. https://doi.org/10.1093/cercor/bhx249.

    Article  PubMed  Google Scholar 

  28. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523. https://doi.org/10.1038/s41467-019-09234-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery. Nat Rev Neurol. 2019;15:594–606. https://doi.org/10.1038/s41582-019-0224-y.

    Article  PubMed  Google Scholar 

  30. Englot DJ, Morgan VL, Chang C. Impaired vigilance networks in temporal lobe epilepsy: mechanisms and clinical implications. Epilepsia. 2020;61:189–202. https://doi.org/10.1111/epi.16423.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hou J, Zhu H, Xiao L, Zhao CW, Liao G, Tang Y, et al. Alterations in cortical-subcortical metabolism in temporal lobe epilepsy with impaired awareness seizures. Front Aging Neurosci. 2022;14:849774. https://doi.org/10.3389/fnagi.2022.849774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fornito A, Arnatkevičiūtė A, Fulcher BD. Bridging the gap between connectome and transcriptome. Trends Cogn Sci. 2019;23:34–50. https://doi.org/10.1016/j.tics.2018.10.005.

    Article  PubMed  Google Scholar 

  33. Okuda T. A low-carbohydrate ketogenic diet promotes ganglioside synthesis via the transcriptional regulation of ganglioside metabolism-related genes. Sci Rep. 2019;9:7627. https://doi.org/10.1038/s41598-019-43952-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mir A, Almudhry M, Alghamdi F, Albaradie R, Ibrahim M, Aldurayhim F, et al. SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet. 2022;141:81–99. https://doi.org/10.1007/s00439-021-02404-x.

    Article  CAS  PubMed  Google Scholar 

  35. McCallum AP, Gallek MJ, Ramey W, Manziello A, Witte MH, Bernas MJ, et al. Cortical gene expression correlates of temporal lobe epileptogenicity. Pathophysiology. 2016;23:181–90. https://doi.org/10.1016/j.pathophys.2016.05.006.

    Article  CAS  PubMed  Google Scholar 

  36. Chen LL, Wu ML, Zhu F, Kai JJ, Dong JY, Wu XM, et al. Neural progenitor cells Rptor ablation impairs development but benefits to seizure-induced behavioral abnormalities. CNS Neurosci Ther. 2016;22:1000–8. https://doi.org/10.1111/cns.12607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peddibhotla S, Nagamani SC, Erez A, Hunter JV, Holder JL Jr, Carlin ME, et al. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27. Eur J Hum Genet. 2015;23:54–60. https://doi.org/10.1038/ejhg.2014.51.

    Article  CAS  PubMed  Google Scholar 

  38. Andrade-Machado R, Benjumea-Cuartas V. Temporal plus epilepsy: anatomo-electroclinical subtypes. Iran J Neurol. 2016;15:153–63.

    PubMed  PubMed Central  Google Scholar 

  39. van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia. 2022;63:1297–313. https://doi.org/10.1111/epi.17210.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–96. https://doi.org/10.1016/s1474-4422(19)30079-1.

    Article  PubMed  Google Scholar 

  41. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24:7829–36. https://doi.org/10.1523/jneurosci.1751-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci. 2009;29:10588–99. https://doi.org/10.1523/jneurosci.2323-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189:619–29. https://doi.org/10.1083/jcb.201003008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Freire-Cobo C, Sierra-Paredes G, Freire M, Sierra-Marcuño G. The calcineurin inhibitor ascomicin interferes with the early stage of the epileptogenic process induced by latrunculin A microperfusion in rat hippocampus. J Neuroimmune Pharmacol. 2014;9:654–67. https://doi.org/10.1007/s11481-014-9558-9.

    Article  PubMed  Google Scholar 

  45. Kurz JE, Moore BJ, Henderson SC, Campbell JN, Churn SB. A cellular mechanism for dendritic spine loss in the pilocarpine model of status epilepticus. Epilepsia. 2008;49:1696–710. https://doi.org/10.1111/j.1528-1167.2008.01616.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oreiro-García MT, Vázquez-Illanes MD, Sierra-Paredes G, Sierra-Marcuño G. Changes in extracellular amino acid concentrations in the rat hippocampus after in vivo actin depolymerization with latrunculin A. Neurochem Int. 2007;50:734–40. https://doi.org/10.1016/j.neuint.2007.01.005.

    Article  CAS  PubMed  Google Scholar 

  47. Dazzo E, Rehberg K, Michelucci R, Passarelli D, Boniver C, VianelloDri V, et al. Mutations in MICAL-1cause autosomal-dominant lateral temporal epilepsy. Ann Neurol. 2018;83:483–93. https://doi.org/10.1002/ana.25167.

    Article  CAS  PubMed  Google Scholar 

  48. Finnema SJ, Toyonaga T, Detyniecki K, Chen MK, Dias M, Wang Q, et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: a [(11) C]UCB-J positron emission tomography study. Epilepsia. 2020;61:2183–93. https://doi.org/10.1111/epi.16653.

    Article  CAS  PubMed  Google Scholar 

  49. Kaneko KI, Irie S, Mawatari A, Igesaka A, Hu D, Nakaoka T, et al. [(18)F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus. Eur J Nucl Med Mol Imaging. 2022. https://doi.org/10.1007/s00259-022-05719-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our deepest appreciation to the research participants and their families.

Funding

The study was funded by the National Key Research and Development Program of China (grant 2022YFC2503804), the National Natural Science Foundation of China (grant 82272045, 91859207, 82271503, 82071461, and 81771873), the Science and Technology Innovation Program of Hunan Province (grant 2021RC4056), the clinical research foundation of the National Clinical Research Center for Geriatric Diseases (XIANGYA) (grant 2020LNJJ01), the National Science Foundation of Hunan Province (grant 2020JJ5922 and 2021JJ31060), and the Key Program of Ministry of Industry and Information Technology of China (CEIEC-2022-ZM02-0219).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Ling Xiao, Yongxiang Tang, Chijun Deng, Rong Li, Haoyue Zhu, Danni Guo, and Jian Li. Zhiquan Yang performed the epilepsy surgery and provided prognostic information. The first draft of the manuscript was written by Ling Xiao and Yongxiang Tang. Li Feng, Hongyu Long, and Shuo Hu revised the work critically for important intellectual content. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hongyu Long, Li Feng or Shuo Hu.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Xiangya Hospital, Central South University.

Consent for participate

Informed consent was obtained from all individual participants or legal guardians included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data and photograph.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ling Xiao and Yongxiang Tang contributed equally to this work as co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 880 KB)

Supplementary file2 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Tang, Y., Deng, C. et al. Differences in whole-brain metabolism are associated with the expression of genes related to neurovascular unit integrity and synaptic plasticity in temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 51, 168–179 (2023). https://doi.org/10.1007/s00259-023-06433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06433-8

Keywords

Navigation