Skip to main content

Advertisement

Log in

International consensus on clinical use of presynaptic dopaminergic positron emission tomography imaging in parkinsonism

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Presynaptic dopaminergic positron emission tomography (PET) imaging serves as an essential tool in diagnosing and differentiating patients with suspected parkinsonism, including idiopathic Parkinson’s disease (PD) and other neurodegenerative and non-neurodegenerative diseases. The PET tracers most commonly used at the present time mainly target dopamine transporters (DAT), aromatic amino acid decarboxylase (AADC), and vesicular monoamine type 2 (VMAT2). However, established standards for the imaging procedure and interpretation of presynaptic dopaminergic PET imaging are still lacking. The goal of this international consensus is to help nuclear medicine practitioners procedurally perform presynaptic dopaminergic PET imaging.

Method

A multidisciplinary task group formed by experts from various countries discussed and approved the consensus for presynaptic dopaminergic PET imaging in parkinsonism, focusing on standardized recommendations, procedures, interpretation, and reporting.

Conclusion

This international consensus and practice guideline will help to promote the standardized use of presynaptic dopaminergic PET imaging in parkinsonism. It will become an international standard for this purpose in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oravivattanakul S, Benchaya L, Wu G, et al. Dopamine transporter (DaT) Scan utilization in a movement disorder center. Mov Disord Clin Pract. 2016;3(1):31–5.

    Article  PubMed  Google Scholar 

  2. Collaborators GBDPsD. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.

    Article  Google Scholar 

  3. Davis KM, Ryan JL, Aaron VD, Sims JB. PET and SPECT imaging of the brain: history, technical considerations, applications, and radiotracers. Semin Ultrasound CT MR. 2020;41(6):521–9.

    Article  PubMed  Google Scholar 

  4. Tian M, He X, Jin C, et al. Transpathology: molecular imaging-based pathology. Eur J Nucl Med Mol Imaging. 2021;48(8):2338–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morbelli S, Esposito G, Arbizu J, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47(8):1885–912.

    Article  PubMed Central  Google Scholar 

  6. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.

    Article  PubMed  Google Scholar 

  7. McKeith IG, Ferman TJ, Thomas AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–55.

    Article  PubMed Central  Google Scholar 

  8. Liu FT, Ge JJ, Wu JJ, et al. Clinical, dopaminergic, and metabolic correlations in Parkinson disease: a dual-tracer PET study. Clin Nucl Med. 2018;43(8):562–71.

    Article  PubMed  Google Scholar 

  9. Yang Y, Ge J, Liu F, et al. Preserved caudate function in young-onset patients with Parkinson’s disease: a dual-tracer PET imaging study. Ther Adv Neurol Disord. 2019;12:1756286419851400. https://doi.org/10.1177/1756286419851400.

  10. Han L, Lu J, Tang Y, et al. Dopaminergic and metabolic correlations with cognitive domains in non-demented Parkinson’s disease. Front Aging Neurosci. 2021;13: 627356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain. 1996;119(Pt 2):585–91.

    Article  PubMed  Google Scholar 

  12. Hsiao IT, Weng YH, Hsieh CJ, et al. Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA Neurol. 2014;71(6):758–66.

    Article  Google Scholar 

  13. Lin SC, Lin KJ, Hsiao IT, et al. In vivo detection of monoaminergic degeneration in early Parkinson disease by (18)F-9-fluoropropyl-(+)-dihydrotetrabenzazine PET. J Nucl Med. 2014;55(1):73–9.

    Article  CAS  Google Scholar 

  14. Brooks DJ. Molecular imaging of dopamine transporters. Ageing Res Rev. 2016;30:114–21.

    Article  CAS  PubMed  Google Scholar 

  15. Fazio P, Svenningsson P, Cselenyi Z, Halldin C, Farde L, Varrone A. Nigrostriatal dopamine transporter availability in early Parkinson’s disease. Mov Disord. 2018;33(4):592–9.

    Article  CAS  Google Scholar 

  16. Nandhagopal R, Kuramoto L, Schulzer M, et al. Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson’s disease. Brain. 2011;134(Pt 11):3290–8.

    Article  PubMed  Google Scholar 

  17. Nandhagopal R, Kuramoto L, Schulzer M, et al. Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain. 2009;132(Pt 11):2970–9.

    Article  CAS  Google Scholar 

  18. Kaasinen V, Kankare T, Joutsa J, Vahlberg T. Presynaptic striatal dopaminergic function in atypical parkinsonism: a metaanalysis of imaging studies. J Nucl Med. 2019;60(12):1757–63.

    Article  CAS  PubMed Central  Google Scholar 

  19. Okamura N, Villemagne VL, Drago J, et al. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with (18)F-AV-133. J Nucl Med. 2010;51(2):223–8.

    Article  Google Scholar 

  20. Ribeiro MJVM, Loc’h C, Dupel C, Nguyen JP, Ponchant M, et al. Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease. Arch Neurol. 2002;59(4):580–6.

    Article  PubMed  Google Scholar 

  21. Justesen TEH, Borghammer P, Aanerud J, Hovind P, Marner L. Sertraline treatment influences [(18)F]FE-PE2I PET imaging for parkinsonism. EJNMMI Res. 2023;13(1):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [(123)I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging. 2023;50(7):1974–87.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang Z, Jiang C, Li L, et al. Correlations between dopaminergic dysfunction and abnormal metabolic network activity in REM sleep behavior disorder. J Cereb Blood Flow Metab. 2020;40(3):552–62.

    Article  PubMed  Google Scholar 

  24. Yoo HS, Lee S, Chung SJ, et al. Clinical and striatal dopamine transporter predictors of beta-amyloid in dementia with Lewy bodies. Neurology. 2020;94(13):e1344–52.

    Article  CAS  PubMed  Google Scholar 

  25. Park DG, Kang SY, Hong JY, Sunwoo MK, Yoon JH. Factors associated with motor severity in vascular parkinsonism with normal dopamine transporter imaging. Parkinsonism Relat Disord. 2022;94:99–103.

    Article  CAS  PubMed  Google Scholar 

  26. Lorberboym M, Djaldetti R, Melamed E, Sadeh M, Lampl Y. 123I-FP-CIT SPECT imaging of dopamine transporters in patients with cerebrovascular disease and clinical diagnosis of vascular parkinsonism. J Nucl Med. 2004;45(10):1688–93.

    CAS  PubMed  Google Scholar 

  27. Liu FT, Wang J, Chen Y. Lost dopaminergic bindings in the caudate of a patient with frontotemporal lobar degeneration-motor neuron disease. JAMA Neurol. 2020;77(11):1448–9.

    Article  PubMed  Google Scholar 

  28. Li W, Lao-Kaim NP, Roussakis AA, et al. (11) C-PE2I and (18) F-Dopa PET for assessing progression rate in Parkinson’s: a longitudinal study. Mov Disord. 2018;33(1):117–27.

    Article  CAS  PubMed  Google Scholar 

  29. Biju G, de la Fuente-Fernandez R. Dopaminergic function and progression of Parkinson’s disease: PET findings. Parkinsonism Relat Disord. 2009;15(Suppl 4):S38-40.

    Article  PubMed  Google Scholar 

  30. Wang J, Zuo CT, Jiang YP, et al. 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol. 2007;254(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  31. Liu SY, Wu JJ, Zhao J, et al. Onset-related subtypes of Parkinson’s disease differ in the patterns of striatal dopaminergic dysfunction: a positron emission tomography study. Parkinsonism Relat Disord. 2015;21(12):1448–53.

    Article  PubMed  Google Scholar 

  32. Wenning GK, Stankovic I, Vignatelli L, et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord. 2022;37(6):1131–48. https://doi.org/10.1002/mds.29005.

  33. Bu LL, Liu FT, Jiang CF, et al. Patterns of dopamine transporter imaging in subtypes of multiple system atrophy. Acta Neurol Scand. 2018;138(2):170–6.

    Article  CAS  PubMed  Google Scholar 

  34. Cilia R, Rossi C, Frosini D, et al. Dopamine transporter SPECT imaging in corticobasal syndrome. PLoS ONE. 2011;6(5): e18301.

    Article  CAS  PubMed Central  Google Scholar 

  35. Chen MJ, Lu JY, Li XY, et al. Striatal dopaminergic lesions contributed to the disease severity in progressive supranuclear palsy. Front Aging Neurosci. 2022;14: 998255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Q, Li X, Li L, et al. Dopamine transporter imaging in progressive supranuclear palsy: severe but nonspecific to subtypes. Acta Neurol Scand. 2022;146(3):237–45. https://doi.org/10.1111/ane.13653.

    Article  CAS  PubMed  Google Scholar 

  37. McCleery J, Morgan S, Bradley KM, Noel-Storr AH, Ansorge O, Hyde C. Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies. Cochrane Database Syst Rev. 2015;1(1):CD010633.

    PubMed  Google Scholar 

  38. van der Zande JJ, Booij J, Scheltens P, Raijmakers PG, Lemstra AW. [(123)]FP-CIT SPECT scans initially rated as normal became abnormal over time in patients with probable dementia with Lewy bodies. Eur J Nucl Med Mol Imaging. 2016;43(6):1060–6.

    Article  PubMed Central  Google Scholar 

  39. Nobili F, Arnaldi D, Morbelli S. Is dopamine transporter invariably impaired at the time of diagnosis in dementia with Lewy bodies? Eur J Nucl Med Mol Imaging. 2016;43(6):1056–9.

    Article  PubMed  Google Scholar 

  40. Buchert R, Buhmann C, Apostolova I, Meyer PT, Gallinat J. Nuclear imaging in the diagnosis of clinically uncertain parkinsonian syndromes. Dtsch Arztebl Int. 2019;116(44):747–54.

    PubMed  PubMed Central  Google Scholar 

  41. Lu J, Wang M, Wu P, et al. Adjustment for the age- and gender-related metabolic changes improves the differential diagnosis of parkinsonism. Phenomics. 2022;3(1):50–63.

    Article  PubMed  Google Scholar 

  42. Wu P, Wang J, Peng S, et al. Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging. Parkinsonism Relat Disord. 2013;19(6):622–7.

    Article  PubMed  Google Scholar 

  43. Ge J, Wu J, Peng S, et al. Reproducible network and regional topographies of abnormal glucose metabolism associated with progressive supranuclear palsy: multivariate and univariate analyses in American and Chinese patient cohorts. Hum Brain Mapp. 2018;39(7):2842–58.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shen B, Wei S, Ge J, et al. Reproducible metabolic topographies associated with multiple system atrophy: network and regional analyses in Chinese and American patient cohorts. Neuroimage Clin. 2020;28: 102416.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu F-T, Lu J-Y, Sun Y-M, et al. Dopaminergic dysfunction and glucose metabolism characteristics in parkin-induced early-onset Parkinson’s disease compared to genetically undetermined early-onset Parkinson’s disease. Phenomics. 2022;3(1):22–33.

    Article  PubMed  Google Scholar 

  46. Xu Q, Jiang C, Ge J, et al. The impact of probable rapid eye movement sleep behavior disorder on Parkinson’s disease: a dual-tracer PET imaging study. Parkinsonism Relat Disord. 2022;95:47–53.

    Article  PubMed  Google Scholar 

  47. Zhao Y, Wu P, Wu J, et al. Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. Eur J Nucl Med Mol Imaging. 2022;49(8):2798–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partially sponsored by National Natural Science Foundation of China (NSFC) (82171421, 91949118, 82171252, 81701250, 82272039, 82021002), Ministry of Science and Technology of China (MOST) (2022YFC2009902, 2021YFA1101700), and National Health Commission of PRC (Pro20211231084249000238).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Mei Tian, Chuantao Zuo, A. Cahid Civelek, Hong Zhang or Jian Wang.

Ethics declarations

Ethical approval

Institutional Review Board approval was waivered for this consensus report.

Conflict of interest

The authors declare no competing interests.

Informed consent

Not applicable.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Zuo, C., Cahid Civelek, A. et al. International consensus on clinical use of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Eur J Nucl Med Mol Imaging 51, 434–442 (2024). https://doi.org/10.1007/s00259-023-06403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06403-0

Keywords

Navigation