Skip to main content

Advertisement

Log in

Association of protein distribution and gene expression revealed by positron emission tomography and postmortem gene expression in the dopaminergic system of the human brain

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution.

Methods

We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman’s rank correlation.

Results

We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140).

Conclusion

We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request. Sharing and reuse of data require the expressed written permission of the authors, as well as clearance from the Institutional Review Boards.

References

  1. Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 2021;10:735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sillivan SE, Konradi C. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat. Neuroscience. 2011;199:501–14.

    Article  CAS  PubMed  Google Scholar 

  3. Bannon MJ, Whitty CJ. Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology. 1997;48:969–77.

    Article  CAS  PubMed  Google Scholar 

  4. Wallert ED, van de Giessen E, Knol RJJ, Beudel M, de Bie RMA, Booij J. Imaging dopaminergic neurotransmission in neurodegenerative disorders. J Nucl Med. 2022;63:27–32.

    Article  Google Scholar 

  5. Ito H, Takahashi H, Arakawa R, Takano H, Suhara T. Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage. 2008;39:555–65.

    Article  PubMed  Google Scholar 

  6. Yamamoto Y, Takahata K, Kubota M, Takano H, Takeuchi H, Kimura Y, et al. Differential associations of dopamine synthesis capacity with the dopamine transporter and D2 receptor availability as assessed by PET in the living human brain. Neuroimage. 2021;226:117543.

    Article  CAS  PubMed  Google Scholar 

  7. Conn K-A, Burne THJ, Kesby JP. Subcortical dopamine and cognition in schizophrenia: looking beyond psychosis in preclinical models. Front Neurosci. 2020;14:542.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stenkrona P, Matheson GJ, Halldin C, Cervenka S, Farde L. D1-dopamine receptor availability in first-episode neuroleptic naive psychosis patients. Int J Neuropsychopharmacol. 2019;22:415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yasuno F, Suhara T, Okubo Y, Sudo Y, Inoue M, Ichimiya T, et al. Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry. 2004;161:1016–22.

    Article  PubMed  Google Scholar 

  10. Arakawa R, Ichimiya T, Ito H, Takano A, Okumura M, Takahashi H, et al. Increase in thalamic binding of [11C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter. J Psychiatr Res. 2009;43:1219–23.

    Article  PubMed  Google Scholar 

  11. Brugger SP, Angelescu I, Abi-Dargham A, Mizrahi R, Shahrezaei V, Howes OD. Heterogeneity of striatal dopamine function in schizophrenia: meta-analysis of Variance. Biol Psychiatry. 2020;87:215–24.

    Article  CAS  PubMed  Google Scholar 

  12. Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok A, McCutcheon RA, et al. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry. 2021;1–12.

  13. Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–44.

    Article  CAS  PubMed  Google Scholar 

  14. Jedema HP, Narendran R, Bradberry CW. Amphetamine-induced release of dopamine in primate prefrontal cortex and striatum: Striking differences in magnitude and timecourse. J Neurochem. 2014;130:490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, et al. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep. 2022;38:110208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rizzo G, Veronese M, Heckemann RA, Selvaraj S, Howes OD, Hammers A, et al. The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study. J Cereb Blood Flow Metab. 2014;34:827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M, et al. Imaging transcriptomics: convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep. 2021;37:110173.

    Article  CAS  PubMed  Google Scholar 

  18. Murgaš M, Michenthaler P, Reed MB, Gryglewski G, Lanzenberger R. Correlation of receptor density and mRNA expression patterns in the human cerebral cortex. Neuroimage. 2022;256:119214.

    Article  PubMed  Google Scholar 

  19. Komorowski A, James GM, Philippe C, Gryglewski G, Bauer A, Hienert M, et al. Association of protein distribution and gene expression revealed by PET and post-mortem quantification in the serotonergic system of the human brain. Cereb Cortex. 2017;27:117–30.

    Article  CAS  PubMed  Google Scholar 

  20. Unterholzner J, Gryglewski G, Philippe C, Seiger R, Pichler V, Godbersen GM, et al. Topologically guided prioritization of candidate gene transcripts coexpressed with the 5-HT1A receptor by combining in vivo PET and Allen human brain atlas data. Cereb Cortex. 2020;30:3771–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Godbersen GM, Murgaš M, Gryglewski G, Klöbl M, Unterholzner J, Rischka L, et al. Coexpression of gene transcripts with monoamine oxidase a quantified by human in vivo positron emission tomography. Cereb Cortex. 2022;32:3516–24.

    Article  CAS  PubMed  Google Scholar 

  22. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  23. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  CAS  PubMed  Google Scholar 

  24. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kubota M, Fujino J, Tei S, Takahata K, Matsuoka K, Tagai K, et al. Binding of dopamine d1 receptor and noradrenaline transporter in individuals with autism spectrum disorder: a PET study. Cereb Cortex. 2020;30:6458–68.

    Article  PubMed  Google Scholar 

  26. Takahata K, Ito H, Takano H, Arakawa R, Fujiwara H, Kimura Y, et al. Striatal and extrastriatal dopamine D 2 receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: A positron emission tomography study with [11C]raclopride and [11C]FLB457. Psychopharmacology. 2012;222:165–72.

    Article  CAS  PubMed  Google Scholar 

  27. Seki C, Ito H, Ichimiya T, Arakawa R, Ikoma Y, Shidahara M, et al. Quantitative analysis of dopamine transporters in human brain using [11C]PE2I and positron emission tomography: evaluation of reference tissue models. Ann Nucl Med. 2010;24:249–60.

    Article  PubMed  Google Scholar 

  28. Sasaki T, Ito H, Kimura Y, Arakawa R, Takano H, Seki C, et al. Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med. 2012;53:1065–73.

    Article  CAS  PubMed  Google Scholar 

  29. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gryglewski G, Seiger R, James GM, Godbersen GM, Komorowski A, Unterholzner J, et al. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage. 2018;176:259–67.

    Article  CAS  PubMed  Google Scholar 

  31. Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001;7:399–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chou YH, Karlsson P, Halldin C, Olsson H, Farde L. A PET study of D(1)-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain. Psychopharmacology. 1999;146:220–7.

    Article  CAS  PubMed  Google Scholar 

  33. Halldin C, Farde L, Högberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med. 1995;36:1275–81.

    CAS  PubMed  Google Scholar 

  34. Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci U S A. 1994;91:11271–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 1999;20:60–80.

    Article  CAS  PubMed  Google Scholar 

  36. Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol. 1999;409:38–56.

    Article  CAS  PubMed  Google Scholar 

  37. Kuhar MJ, Vaughan R, Uhl G, Cerruti C, Revay R, Freed C, et al. Localization of dopamine transporter protein by microscopic histochemistry. Adv Pharmacol. 1998;42:168–70.

    Article  CAS  PubMed  Google Scholar 

  38. Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS. Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol. 1992;321:325–35.

    Article  CAS  PubMed  Google Scholar 

  39. Komorowski A, Weidenauer A, Murgaš M, Sauerzopf U, Wadsak W, Mitterhauser M, et al. Association of dopamine D2/3 receptor binding potential measured using PET and [11C]-(+)-PHNO with post-mortem DRD2/3 gene expression in the human brain. Neuroimage. 2020;223:117270.

    Article  CAS  PubMed  Google Scholar 

  40. Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A. Menga: a new comprehensive tool for the integration of neuroimaging data and the allen human brain transcriptome atlas. PLoS ONE. 2016;11:0148744.

    Article  Google Scholar 

  41. Pak K, Seo S, Lee MJ, Im HJ, Kim K, Kim IJ. Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability. Synapse. 2022;76:22226.

    Article  Google Scholar 

  42. Rastedt DE, Vaughan RA, Foster JD. Palmitoylation mechanisms in dopamine transporter regulation. J Chem Neuroanat. 2017;3–9.

  43. Fagan RR, Kearney PJ, Sweeney CG, Luethi D, Schoot Uiterkamp FE, Schicker K, et al. Dopamine transporter trafficking and Rit2 GTPase: mechanism of action and in vivo impact. J Biol Chem. 2020;295:5229–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci. 1996;16:436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roy S. Seeing the unseen: the hidden world of slow axonal transport. Neuroscientist. 2014;20:71–81.

    Article  PubMed  Google Scholar 

  46. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.

    Article  CAS  PubMed  Google Scholar 

  47. Donnemiller E, Brenneis C, Wissel J, Scherfler C, Poewe W, Riccabona G, et al. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPET study using 123I-β-CIT and 123I-IBZM. Eur J Nucl Med. 2000;27:1410–4.

    Article  CAS  PubMed  Google Scholar 

  48. Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P. The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation. 2015;12:152.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135:2058–73.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Seaman KL, Smith CT, Juarez EJ, Dang LC, Castrellon JJ, Burgess LL, et al. Differential regional decline in dopamine receptor availability across adulthood: linear and nonlinear effects of age. Hum Brain Mapp. 2019;40:3125–38.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cutler J, Wittmann MK, Abdurahman A, Hargitai LD, Drew D, Husain M, et al. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat Commun. 2021;12:4440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank radiation technologists, clinical coordinators and the members of the Brain Disorder Translational Team for their support with the positron emission tomography scans; and the staff of the Department of Radiopharmaceuticals Development for their radioligand synthesis and metabolite analysis.

Funding

This study was supported by a Grant-in-Aid for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS; JP19dm0207072), the Strategic International Brain Science Research Promotion Program (Brain/MINDS Beyond; JP19dm0307105), and JST Grant Number JPMJMS2024, and AMED Grant Number 20356533 to Makoto Higuchi. It was also supported by JSPS KAKENHI 20K07935, MHLW KAKENHI 20GC1018, 22GC1004 to Keisuke Takahata, and JSPS KAKENHI 22K15770 to Yasuharu Yamamoto. No potential conflicts of interest relevant to this article exist.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yasuharu Yamamoto, Keisuke Takahata, Manabu Kubota, Hiroyoshi Takeuchi, Sho Moriguchi, Takeshi Sasaki, Chie Seki, Hironobu Endo, Kiwamu Matsuoka, Kenji Tagai, Yasuyuki Kimura, Shin Kurose, Masaru Mimura and Makoto Higuchi: data collection and analysis. Kazunori Kawamura and Ming-Rong Zhang: Radioligand synthesis. The first draft of the manuscript was written by Yasuharu Yamamoto and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Keisuke Takahata.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Institutional Review Board of the National Institutes for Quantum Science and Technology, Chiba, Japan.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Written informed consent was obtained from all participants regarding publishing their data.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 167 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Takahata, K., Kubota, M. et al. Association of protein distribution and gene expression revealed by positron emission tomography and postmortem gene expression in the dopaminergic system of the human brain. Eur J Nucl Med Mol Imaging 50, 3928–3936 (2023). https://doi.org/10.1007/s00259-023-06390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06390-2

Keywords

Navigation