Skip to main content

Advertisement

Log in

Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates.

Methods

We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions.

Results

[11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain.

Conclusion

[11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Imaging data are available upon reasonable request to the corresponding author.

Abbreviations

BBB:

Blood brain barrier

PARP:

Poly (ADP-ribose) polymerase

GBM:

Glioblastoma multiforme

SUV:

Standardized uptake value

TAC:

Time activity curve

RCY:

Radiochemical yield

PDB:

Protein database

HPLC:

High-performance liquid chromatography

References

  1. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alavi A, Lakhani P, Mavi A, Kung JW, Zhuang H. Radiol Clin North Am. 2004;42:983.

    Article  PubMed  Google Scholar 

  3. Chiarugi A, Moskowitz MA. PARP-1–a perpetrator of apoptotic cell death? Science. 2002;297:200–1.

    Article  CAS  PubMed  Google Scholar 

  4. Delgado-Lopez PD, Corrales-Garcia EM. Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol. 2016;18:1062–71.

    Article  CAS  PubMed  Google Scholar 

  5. Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

    Article  CAS  PubMed  Google Scholar 

  6. Petterson SA, Sørensen MD, Kristensen BW. Expression profiling of primary and recurrent glioblastomas reveals a reduced level of pentraxin 3 in recurrent glioblastomas. J Neuropathol Exp Neurol. 2020;79:975–85.

    Article  CAS  PubMed  Google Scholar 

  7. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

    Article  CAS  PubMed  Google Scholar 

  8. Sarkaria JN, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20:184–91.

    Article  CAS  PubMed  Google Scholar 

  9. Murnyak B, et al. PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma. Oncotarget. 2017;8:46348–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schaller BJ, Modo M, Buchfelder M. Molecular imaging of brain tumors: a bridge between clinical and molecular medicine? Mol Imaging Biol. 2007;9:60–71.

    Article  CAS  PubMed  Google Scholar 

  11. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Review of functional/anatomical imaging in oncology. Nucl Med Commun. 2012;33:349–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016;18:426–34.

    Article  CAS  PubMed  Google Scholar 

  13. Chen W, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  14. Scott AM, et al. PET changes management and improves prognostic stratification in patients with recurrent colorectal cancer: results of a multicenter prospective study. J Nucl Med. 2008;49:1451–7.

    Article  PubMed  Google Scholar 

  15. Kraeber-Bodere F, Bailly C, Chérel M, Chatal JF. ImmunoPET to help stratify patients for targeted therapies and to improve drug development. Eur J Nucl Med Mol Imaging. 2016;43:2166–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han S, Woo S, Kim YJ, Suh CH. Impact of (68)Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur Urol. 2018;74:179–90.

    Article  CAS  PubMed  Google Scholar 

  17. Götz I, Grosu AL. [(18)F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients - a review. Front Oncol. 2013;3:104.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee HS, et al. The development of 18F fluorthanatrace: A PET radiotracer for imaging poly (ADP-Ribose) polymerase-1. Radiology: Imaging Cancer 4, e210070 (2022).

  19. Young RJ, et al. Preclinical and first-in-human-brain-cancer applications of [18F]poly (ADP-ribose) polymerase inhibitor PET/MR. Neuro-Oncology Advances 2, (2020).

  20. Penning TD, et al. Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514–23.

    Article  CAS  PubMed  Google Scholar 

  21. Byers LA, et al. Veliparib in combination with carboplatin and etoposide in patients with treatment-naive extensive-stage small cell lung cancer: a phase 2 randomized study. Clin Cancer Res. 2021;27:3884–95.

    Article  CAS  PubMed  Google Scholar 

  22. Owonikoko TK, et al. Randomized phase II trial of cisplatin and etoposide in combination with veliparib or placebo for extensive-stage small-cell lung cancer: ECOG-ACRIN 2511 study. J Clin Oncol. 2019;37:222–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dieras V, et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:1269–82.

    Article  CAS  PubMed  Google Scholar 

  24. Boussios S, et al. Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Invest New Drugs. 2020;38:181–93.

    Article  PubMed  Google Scholar 

  25. Reilly SW, et al. Synthesis and evaluation of an AZD2461 [(18)F]PET probe in non-human primates reveals the PARP-1 inhibitor to be non-blood-brain barrier penetrant. Bioorg Chem. 2019;83:242–9.

    Article  CAS  PubMed  Google Scholar 

  26. de Gooijer MC, Buil LCM, Çitirikkaya CH, Hermans J, Beijnen JH, van Tellingen O. ABCB1 attenuates the brain penetration of the PARP inhibitor AZD2461. Mol Pharm. 2018;15:5236–43.

    Article  PubMed  Google Scholar 

  27. Zeng H, Zhang H, Jang F, Zhao L, Zhang J. Molecular modeling studies on benzimidazole carboxamide derivatives as PARP-1 inhibitors using 3D-QSAR and docking. Chem Biol Drug Des. 2011;78:333–52.

    Article  CAS  PubMed  Google Scholar 

  28. Almahli H, et al. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg Chem. 2018;77:443–56.

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, et al. Discovery of pamiparib (BGB-290), a potent and selective poly (ADP-ribose) polymerase (PARP) inhibitor in clinical development. J Med Chem. 2020;63:15541–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson AA, Jin L, Garcia A, DaSilva JN, Houle S. An admonition when measuring the lipophilicity of radiotracers using counting techniques. Appl Radiat Isot. 2001;54:203–8.

    Article  CAS  PubMed  Google Scholar 

  31. De Feyter HM, et al. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth. Neuro Oncol. 2016;18:1079–87.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG. Waxholm space atlas of the Sprague Dawley rat brain. Neuroimage. 2014;97:374–86.

    Article  PubMed  Google Scholar 

  33. Baum E, et al. PET imaging evaluation of four sigma1 radiotracers in nonhuman primates. J Nucl Med. 2017;58:982–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cai Z, et al. Synthesis and preclinical evaluation of an 18F-Labeled synaptic vesicle glycoprotein 2A PET imaging probe: [18F]SynVesT-2. ACS Chem Neurosci. 2020;11:592–603.

    Article  CAS  PubMed  Google Scholar 

  35. Thorsell A-G, et al. Structural basis for potency and promiscuity in Poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem. 2017;60:1262–71.

    Article  CAS  PubMed  Google Scholar 

  36. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hitchcock SA. Structural modifications that alter the P-glycoprotein efflux properties of compounds. J Med Chem. 2012;55:4877–95.

    Article  CAS  PubMed  Google Scholar 

  38. Kolaczkowski L, Barkalow J, Barnes DM, Haight A, Pritts W, Schellinger A. Synthesis of (R)-Boc-2-methylproline via a memory of chirality cyclization. application to the synthesis of veliparib, a poly(ADP-ribose) polymerase inhibitor. The Journal of Organic Chemistry 84, 4837–4845 (2019).

  39. Rankovic Z. CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem. 2015;58:2584–608.

    Article  CAS  PubMed  Google Scholar 

  40. Niu J, et al. Parent-metabolite pharmacokinetic modeling and pharmacodynamics of veliparib (ABT-888), a PARP Inhibitor, in patients with BRCA 1/2-mutated cancer or PARP-sensitive tumor types. J Clin Pharmacol. 2017;57:977–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of Poly(ADP-ribose) polymerase. Drug Metab Dispos. 2011;39:1161–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lassen NA, et al. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab. 1995;15:152–65.

    Article  CAS  PubMed  Google Scholar 

  43. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30:46–50.

    Article  PubMed  Google Scholar 

  44. Naganawa M, et al. Receptor occupancy of the κ-opioid antagonist LY2456302 measured with positron emission tomography and the novel radiotracer 11C-LY2795050. J Pharmacol Exp Ther. 2016;356:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferreira MT, Berger L, Rouleau M, Poirier GG. Assessment of PARP-1 distribution in tissues of cynomolgus monkeys. J Histochem Cytochem. 2020;68:413–35.

    Article  CAS  PubMed  Google Scholar 

  46. Tu Z, Chu W, Zhang J, Dence CS, Welch MJ, Mach RH. Synthesis and in vivo evaluation of [11C]PJ34, a potential radiotracer for imaging the role of PARP-1 in necrosis. Nucl Med Biol. 2005;32:437–43.

    Article  CAS  PubMed  Google Scholar 

  47. Reiner T, et al. Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. Neoplasia. 2012;14:169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carlucci G, et al. Dual-modality optical/PET imaging of PARP1 in glioblastoma. Mol Imaging Biol. 2015;17:848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou D, et al. Synthesis, [(1)(8)F] radiolabeling, and evaluation of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors for in vivo imaging of PARP-1 using positron emission tomography. Bioorg Med Chem. 2014;22:1700–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Michel LS, et al. PET of poly (ADP-Ribose) polymerase activity in cancer: preclinical assessment and first in-human studies. Radiology. 2017;282:453–63.

    Article  PubMed  Google Scholar 

  51. Carney B, et al. Target engagement imaging of PARP inhibitors in small-cell lung cancer. Nat Commun. 2018;9:176.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shuhendler AJ, et al. [(18)F]-SuPAR: a radiofluorinated probe for noninvasive imaging of DNA damage-dependent Poly(ADP-ribose) polymerase activity. Bioconjug Chem. 2019;30:1331–42.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou D, et al. Radiosynthesis and evaluation of talazoparib and its derivatives as PARP-1-targeting agents. Biomedicines 9, (2021).

  54. Pilie PG, Gay CM, Byers LA, O’Connor MJ, Yap TA. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 2019;25:3759–71.

    Article  CAS  PubMed  Google Scholar 

  55. Wang L, et al. PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs. Int J Mol Sci 18, (2017).

  56. Miknyoczki S, et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol Cancer Ther. 2007;6:2290–302.

    Article  CAS  PubMed  Google Scholar 

  57. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4:153–8.

    Article  CAS  PubMed  Google Scholar 

  58. Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22:1440–52.

    Article  PubMed  Google Scholar 

  59. Wiegand R, Wu J, Sha X, LoRusso P, Li J. Simultaneous determination of ABT-888, a poly (ADP-ribose) polymerase inhibitor, and its metabolite in human plasma by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:333–9.

    Article  CAS  PubMed  Google Scholar 

  60. Kikuchi R, et al. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102:4426–32.

    Article  CAS  PubMed  Google Scholar 

  61. Carney B, et al. Non-invasive PET imaging of PARP1 expression in glioblastoma models. Mol Imaging Biol. 2016;18:386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Donawho CK, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.

    Article  CAS  PubMed  Google Scholar 

  63. Kauppinen TM, Swanson RA. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience. 2007;145:1267–72.

    Article  CAS  PubMed  Google Scholar 

  64. Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discovery. 2020;19:711–36.

    Article  CAS  PubMed  Google Scholar 

  65. Olsen AL, Feany MB. PARP inhibitors and parkinson’s disease. N Engl J Med. 2019;380:492–4.

    Article  PubMed  Google Scholar 

  66. Lengyel-Zhand Z, Puentes LN, Mach RH. PARkinson’s: From cellular mechanisms to potential therapeutics. Pharmacol Ther. 2022;230: 107968.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the staff at the Yale PET Center for their technical assistance and would like to thank Andrew Gifford, Sarah J. Routledge, and Kiran Shabir for their technical support in the binding assays.

Funding

This study is supported by the National Cancer Institute of the National Institutes of Health under Award Number R03CA249569. This publication was made possible by CTSA grant UL1 RR024139 from the National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D.O., R.P., J.T., J.R., Y.H., Z.C. contributed to the design and synthesis of the radioligand. B.C., T.T., M.L., M.T., D.H., K.F., H.D.F., R.E.C. contributed to the animal imaging and ex vivo and in vitro validation studies. M.K., L.Z., and M.Q.Z. performed the metabolism analysis. H.D.F. acquired MRI data and analyzed tumor volumes. R.E.C. and Y.H. supervised the PET imaging study. B.C., D.O., Z.C. drafted the article. Z.C. conceived and supervised the whole study. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Zhengxin Cai.

Ethics declarations

Ethical approval

PET imaging experiments were performed in rats and rhesus monkeys (Macaca mulatta) according to the protocols approved by the Yale University Institutional Animal Care and Use Committee. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Conflicts of interest

The authors declare no conflicts of interest related to this work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Brain.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1702 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Ojha, D.P., Toyonaga, T. et al. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. Eur J Nucl Med Mol Imaging 50, 2081–2099 (2023). https://doi.org/10.1007/s00259-023-06162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06162-y

Keywords

Navigation