Skip to main content

Advertisement

Log in

Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Editorial to this article was published on 21 March 2023

Abstract

Purpose

The programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) expression correlate with the immunotherapeutic response rate. The sensitive and non-invasive imaging of immune checkpoint biomarkers is favorable for the accurate detection and characterization, image-guided immunotherapy in cancer precision medicine. Magnetic particle imaging (MPI), as a novel and emerging imaging modality, possesses the advantages of high sensitivity, no image depth limitation, positive contrast, and absence of radiation. Hence, in this study, we performed the pioneer investigation of monitoring PD-L1 expression using MPI and the MPI-guided immunotherapy.

Methods

We developed anti-PD-L1 antibody (aPDL1)-conjugated magnetic fluorescent hybrid nanoparticles (MFNPs-aPDL1) and utilized MPI in combination with fluorescence imaging (FMI) to dynamically monitor and quantify PD-L1 expression in various tumors with different PD-L1 expression levels. The ex vivo real-time polymerase chain reaction (qPCR), western blotting, and immunofluorescence staining analysis were further performed to validate the in vivo imaging observation. Moreover, the MPI was further performed for the guidance of immunotherapy.

Results

Our data showed that PD-L1 expression can be specifically and sensitively monitored and quantified using MPI and FMI imaging methods, which were validated by ex vivo qPCR and western blotting analysis. In addition, MPI-guided PD-L1 immunotherapy can enhance the effectiveness of cancer immunotherapy.

Conclusion

To our best knowledge, this is the pioneer study to utilize MPI in combination with a newly developed MFNPs-aPDL1 imaging probe to dynamically visualize and quantify PD-L1 expression in tumor microenvironment. This imaging strategy may facilitate the clinical optimization of immunotherapy management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as supplemental information.

Abbreviations

PD-1:

Programmed cell death protein-1

PD-L1:

Programmed cell death ligand-1

MPI:

Magnetic particle imaging

FMI:

Fluorescence molecular imaging

aPDL1:

Anti-PD-L1 antibody

MFNP:

Magnetic fluorescent nanoparticle

PET:

Positron emission tomography

NIR:

Near-infrared

qPCR:

Real-time polymerase chain reaction

TEM:

Transmission electron microscopy

ROI:

Region of interest

ALT:

Alanine transaminase

AST:

Aspartate transaminase

ALP:

Alkaline phosphatase

TBR:

Tumor-to-background ratio

IFN-γ:

Interferon-γ

EPR:

Enhanced permeability and retention

FOV:

Field of view

PBS:

Phosphate-buffered saline

References

  1. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239–45.

    Article  CAS  PubMed  Google Scholar 

  2. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.

  3. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14(12):1212–8.

    Article  CAS  PubMed  Google Scholar 

  4. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu Q, Sun W, Wang J, Ruan H, Zhang X, Ye Y, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng. 2018;2(11):831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  7. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A. 2015;112(9):E966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat Commun. 2017;8:14572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.

    Article  CAS  PubMed  Google Scholar 

  11. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roach C, Zhang N, Corigliano E, Jansson M, Toland G, Ponto G, et al. Development of a companion diagnostic PD-L1 immunohistochemistry assay for pembrolizumab therapy in non-small-cell lung cancer. Appl Immunohistochem Mol Morphol. 2016;24(6):392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen AR, Siu LLJJo. PD-L1 testing in cancer: challenges in companion diagnostic development. JAMA Oncol. 2016;2(1):15–6.

  14. Chamoto K, Hatae R, Honjo TJIjoco. Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int J Clin Oncol . 2020;25(5):790–800.

  15. Christensen C, Kristensen LK, Alfsen MZ, Nielsen CH, Kjaer AJEjonm. Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody. Eur J Nucl Med Mol Imaging. 2020;47(5):1302–13. https://doi.org/10.1007/s00259-019-04646-4.

  16. Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215–27.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A, et al. PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer. 2019;7(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9(1):4664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donnelly DJ, Smith RA, Morin P, Lipovšek D, Gokemeijer J, Cohen D, et al. Synthesis and biologic evaluation of a novel 18F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med. 2018;59(3):529–35.

    Article  CAS  PubMed  Google Scholar 

  20. Lipovšek DJPE, Design, Selection. Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel. 2011;24(1–2):3–9.

  21. van de Donk PP, Oosting SF, Knapen DG, an der Wekken AJ, Brouwers AH, Lub-de Hooge MN, et al. Molecular imaging to support cancer immunotherapy. J Immunother Cancer. 2022;10(8):e004949.

  22. Nedrow JR, Josefsson A, Park S, Ranka S, Roy S, Sgouros GJJoNM. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J Nucl Med. 2017;58(10):1560–6.

  23. Gao H, Wu Y, Shi J, Zhang X, Liu T, Hu B, et al. Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. J Immunother Cancer. 2020;8(2): e001156.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kang HM, Kang MW, Kashiwagi S, Choi HS. NIR fluorescence imaging and treatment for cancer immunotherapy. J Immunother Cancer. 2022;10(7): e004936.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun T, Zhang W, Li Y, Jin Z, Du Y, Tian J, et al. Combination immunotherapy with cytotoxic T-lymphocyte–associated antigen-4 and programmed death protein-1 inhibitors prevents postoperative breast tumor recurrence and metastasis. Mol Cancer Ther. 2020;19(3):802–11.

    Article  CAS  PubMed  Google Scholar 

  26. Du Y, Liang X, Li Y, Sun T, Xue H, Jin Z, et al. Liposomal nanohybrid cerasomes targeted to PD-L1 enable dual-modality imaging and improve antitumor treatments. Cancer Lett. 2018;414:230–8.

    Article  CAS  PubMed  Google Scholar 

  27. Wan H, Ma H, Zhu S, Wang F, Tian Y, Ma R, et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv Funct Mater. 2018;28(50):1804956.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol. 2019;37(11):1322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gleich B, Weizenecker JJN. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.

    Article  CAS  PubMed  Google Scholar 

  30. Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50(14):8102–46.

    Article  CAS  PubMed  Google Scholar 

  31. Bauer LM, Situ SF, Griswold MA, Samia AC. Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett. 2015;6(13):2509–17.

    Article  CAS  PubMed  Google Scholar 

  32. Bulte JWJAddr. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv Rev. 2019;138:293–301.

  33. Song G, Chen M, Zhang Y, Cui L, Qu H, Zheng X, et al. Janus Iron Oxides @ Semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett. 2018;18(1):182–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gu E, Chen WY, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2(4):335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kiru L, Zlitni A, Tousley AM, Dalton GN, Wu W, Lafortune F, et al. In vivo imaging of nanoparticle-labeled CAR T cells. Proc Natl Acad Sci U S A. 2022;119(6): e2102363119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Q, Ma X, Liao H, Liang Z, Li F, Tian J, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano. 2020;14(2):2053–62.

    Article  CAS  PubMed  Google Scholar 

  37. Yu EY, Bishop M, Zheng B, Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 2017;17(3):1648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Du Y, Liu X, Liang Q, Liang X-J, Tian JJNl. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 2019;19(6):3618–26.

  39. Wang G, Li W, Shi G, Tian Y, Kong L, Ding N, et al. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur J Nucl Med Mol Imaging. 2022;49(8):2723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun A, Hayat H, Liu S, Tull E, Bishop JO, Dwan BF, et al. 3D in vivo magnetic particle imaging of human stem cell-derived islet organoid transplantation using a machine learning algorithm. Front Cell Dev Biol. 2021;9: 704483.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hayat H, Sun A, Hayat H, Liu S, Talebloo N, Pinger C, et al. Artificial intelligence analysis of magnetic particle imaging for islet transplantation in a mouse model. Mol Imaging Biol. 2021;23(1):18–29.

    Article  PubMed  Google Scholar 

  42. Sanmamed MF, Chester C, Melero I, Kohrt H. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol. 2016;27(7):1190–8.

    Article  CAS  PubMed  Google Scholar 

  43. Nejadnik H, Pandit P, Lenkov O, Lahiji AP, Yerneni K, Daldrup-Link HE. Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells. Mol Imaging Biol. 2019;21(3):465–72.

    Article  CAS  PubMed Central  Google Scholar 

  44. Haegele J, Panagiotopoulos N, Cremers S, Rahmer J, Franke J, Duschka RL, et al. Magnetic particle imaging: a resovist based marking technology for guide wires and catheters for vascular interventions. IEEE Trans Med Imaging. 2016;35(10):2312–8.

    Article  PubMed  Google Scholar 

  45. Graeser M, Thieben F, Szwargulski P, Werner F, Gdaniec N, Boberg M, et al. Human-sized magnetic particle imaging for brain applications. Nat Commun. 2019;10(1):1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Azargoshasb S, Molenaar L, Rosiello G, Buckle T, van Willigen DM, van de Loosdrecht MM, et al. Advancing intraoperative magnetic tracing using 3D freehand magnetic particle imaging. Int J Comput Assist Radiol Surg. 2022;17(1):211–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the instrumental and technical support of multi-modal biomedical imaging experimental platform, Institute of Automation, Chinese Academy of Sciences.

Funding

This work was funded by National Natural Science Foundation of China under Grant Nos 62027901, 82272111, 92159303, 81871514, 81227901, 81470083, and 81527805; Beijing Natural Science Foundation under Grant No. 7212207; the National Key Research and Development Program of China under Grant No. 2017YFA0700401; and Shenzhen Science and Technology Program (JCYJ20210324140205013).

Author information

Authors and Affiliations

Authors

Contributions

The concept and study design were conceived by Yang Du, Jie Tian, and Guosheng Song. Zhengyao Peng, Chang Lu, Guangyuan Shi, and Lin Yin performed the study and data analysis. Yang Du, Zhengyao Peng, and Chang Lu prepared the manuscript. Jie Tian and Guosheng Song edited the manuscript.

Corresponding authors

Correspondence to Guosheng Song, Jie Tian or Yang Du.

Ethics declarations

Ethics approval

Four- to five-week-old male BALB/c mice and nude mice were got from the Vital River Laboratory Animal Technology Corporation (Beijing, China). All animal handling procedures were strictly based on the guidelines of the Institutional Animal Care and Use Committee (Permit No: IA21-2203–24) at the Institute of Automation, Chinese Academy of Sciences.

Consent for publication

All the co-authors approved the manuscript and agreed with submission to your esteemed journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9547 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Lu, C., Shi, G. et al. Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy. Eur J Nucl Med Mol Imaging 50, 1291–1305 (2023). https://doi.org/10.1007/s00259-022-06083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-06083-2

Keywords

Navigation