Skip to main content

Advertisement

Log in

A clinical study of a CD44v6-targeted fluorescent agent for the detection of non-muscle invasive bladder cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Bladder cancer is the fifth most common malignancy in humans. Cystoscopy under white light imaging is the gold standard for bladder cancer diagnosis, but some tumors are difficult to visualize and can be overlooked, resulting in high recurrence rates. We previously developed a phage display-derived peptide-based near-infrared imaging probe, PLSWT7-DMI, which binds specifically to bladder cancer cells and is nontoxic to animals. Here, we report a clinical research of this probe for near-infrared fluorescence endoscopic detection of bladder cancer.

Results

The purity, efficacy, safety, and nontoxicity of PLSWT7-DMI were confirmed prior to its clinical application. Twenty-two patients diagnosed with suspected non-muscle invasive bladder cancer were enrolled in the present study. Following intravesical administration of the probe, the entire mucosa was imaged under white and near-infrared imaging using an in-house developed endoscope that could switch between these two modes. The illuminated lesions under near-infrared light were biopsied and sent for histopathological examination. We observed a 5.1-fold increase in the fluorescence intensity in the tumor samples compared to normal tissue, and the probe demonstrated a sensitivity and specificity of 91.2% and 90%, respectively. Common diagnostic challenges, such as small satellite tumors, carcinoma in situ, and benign suspicious mucosa, were visualized and could be distinguished from cancer. Furthermore, no adverse effects were observed in humans. These first-in-human results indicate that PLSWT7-DMI-based near-infrared fluorescence endoscopy is a safe and effective approach for the improved detection of bladder cancer, and may enable thorough resection to prevent recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008;10(1):31–43.

    PubMed  PubMed Central  Google Scholar 

  3. Carson CC. World Health Organization classification of tumours: pathology & genetics of tumours of the urinary system and male genital organs. Urology. 2005;65(1):213–4.

    Article  Google Scholar 

  4. Jichlinski P, Leisinger H. Fluorescence cystoscopy in the management of bladder cancer: a help for the urologist! Urol Int. 2005;74(2):97–101.

    Article  PubMed  Google Scholar 

  5. Oliva Encina J, Marco Valdenebro A, Pelegrí Gabarró J, Rioja SC. Beyond the photodynamic diagnosis: searching for excellence in the diagnosis of non-muscle-invasive bladder cancer. Actas Urol Esp. 2010;34(8):657–68.

    Article  CAS  PubMed  Google Scholar 

  6. Sylvester RJ, van der Meijden APM, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–77.

    Article  PubMed  Google Scholar 

  7. Aboumarzouk O, Valentine R, Buist R, Ahmad S, Nabi G, Eljamel S, et al. Laser-induced autofluorescence spectroscopy: can it be of importance in detection of bladder lesions? Photodiagn Photodyn. 2015;12(1):76–83.

    Article  Google Scholar 

  8. Babjuk M, Burger M, Compérat E, Gontero P, Mostafid AH, Palou J, van Rhijn BWG, Rouprêt M, Shariat SF, Sylvester R, Zigeuner R, Guidelines Associates: Capoun O, Cohen D, Dominguez Escrig JL, Peyronnet B, Seisen T, Soukup V. Guidelines on non-musclie invasive bladder cancer (TaT1 and CIS). EAU. 2020.

  9. Babjuk M, Burger M, Compérat EM, Gontero P, Mostafid AH, Palou J, et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) - 2019 update. Eur Urol. 2019;76(5):639–57.

    Article  CAS  PubMed  Google Scholar 

  10. Lykke MR, Nielsen TK, Ebbensgaard NA, Zieger K. Reducing recurrence in non-muscle-invasive bladder cancer using photodynamic diagnosis and immediate post-transurethral resection of the bladder chemoprophylaxis. Scand J Urol. 2015;49(3):230–6.

    Article  CAS  PubMed  Google Scholar 

  11. Fradet Y, Grossman HB, Gomella L, Lerner S, Cookson M, Albala D, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol. 2007;178(1):68–73.

    Article  PubMed  Google Scholar 

  12. Grimm M, Steinhoff C, Simon X, Spiegelhalder P, Ackermann R, Vögeli TA. Effect of routine repeat transurethral resection for superficial bladder cancer: a long-term observational study. J Urol. 2003;170(2):433–7.

    Article  PubMed  Google Scholar 

  13. Chai CA, Yeoh WS, Rajandram R, Aung KP, Ong TA, Kuppusamy S, Nazran A, Kumaran K, Razack AHA, Teoh JY. Comparing CxBladder to urine cytology as adjunct to cystoscopy in surveillance of non-muscle invasive bladder cancer-a pilot study. Front Surg. 2021;8:659292.

  14. Beji S, Lam GW, Ostergren PB, Toxvaerd A, Sonksen J, Fode M. Diagnostic value of probe-based confocal laser endomicroscopy versus conventional endoscopic biopsies of non-muscle invasive bladder tumors: a pilot study. Scand J Urol. 2021;55(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  15. Rouanne M, Betari R, Radulescu C, Goubar A, Signolle N, Neuzillet Y, et al. Stromal lymphocyte infiltration is associated with tumour invasion depth but is not prognostic in high-grade T1 bladder cancer. Eur J Cancer. 2019;108:111–9.

    Article  PubMed  Google Scholar 

  16. Daneshmand S, Bazargani ST, Bivalacqua TJ, Holzbeierlein JM, Willard B, Taylor JM, et al. Blue light cystoscopy for the diagnosis of bladder cancer: results from the US perspective multicenter registry. Urol Oncol. 2018;36(8):361.e1-361.e6.

    Article  Google Scholar 

  17. Drejer D, Beji S, Oezeke R, Nielsen AM, Hoyer S, Johansen TEB, et al. Comparison of white light, photodynamic diagnosis, and narrow-band imaging in detection of carcinoma in situ or flat dysplasia at transurethral resection of the bladder: the DaBlaCa-8 study. Urology. 2017;102:138–42.

    Article  PubMed  Google Scholar 

  18. Rink M, Babjuk M, Catto JWF, Jichlinski P, Shariat SF, Stenzl A, et al. Hexyl aminolevulinate–guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non–muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol. 2013;64(4):624–38.

    Article  PubMed  Google Scholar 

  19. Schraml J, Silva JDC, Babjuk M. Current concept of transurethral resection of bladder cancer: from re-transurethral resection of bladder cancer to en-bloc resection. Curr Opin Urol. 2018;28(6):591–7.

    Article  PubMed  Google Scholar 

  20. Liu J, Droller MJ, Liao JC. New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol. 2012;188(2):361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wiesner C, Jäger W, Salzer A, Biesterfeld S, Kiesslich R, Hampel C, et al. Confocal laser endomicroscopy for the diagnosis of urothelial bladder neoplasia: a technology of the future? BJU Int. 2011;107(3):399–403.

    Article  PubMed  Google Scholar 

  22. Gladkova N, Streltsova O, Zagaynova E, Kiseleva E, Gelikonov V, Gelikonov G, et al. Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study. J Biophotonics. 2011;4(7–8):519–32.

    Article  PubMed  Google Scholar 

  23. Mahalingam SM, Dudkin VY, Goldberg S, Klein D, Yi F, Singhal S, et al. Evaluation of a centyrin-based near-infrared probe for fluorescence-guided surgery of epidermal growth factor receptor positive tumors. Bioconjug Chem. 2017;28(11):2865–73.

    Article  CAS  PubMed  Google Scholar 

  24. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article  CAS  PubMed  Google Scholar 

  25. Peng L, Shang W, Guo P, He K, Wang H, Han Z, et al. Phage display-derived peptide-based dual-modality imaging probe for bladder cancer diagnosis and resection postinstillation: a preclinical study. Mol Cancer Ther. 2018;17(10):2100–11.

    Article  CAS  PubMed  Google Scholar 

  26. Benias PC, Wells RG, Sackey-Aboagye B, Klavan H, Reidy J, Buonocore D, Miranda M, Kornacki S, Wayne M, Carr-Locke DL, Theise ND. Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep. 2018;8(1):4947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bourn J, Rathore K, Donnell R, White W, Uddin MJ, Marnett L, Cekanova M. Detection of carcinogen-induced bladder cancer by fluorocoxib A. BMC Cancer. 2019;19(1):1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt A, Sommer F, Reiner M, Klotz T, Engelmann U, Addicks K, Bloch W. Differential endostatin binding to bladder, prostate and kidney tumour vessels. BJU Int. 2005;95(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zupančič D, Kreft ME, Sterle I, Romih R. Combined lectin- and immuno-histochemistry (CLIH) for applications in cell biology and cancer diagnosis: analysis of human urothelial carcinomas. Eur J Histochem. 2020;64(3):3141.

    Article  PubMed Central  Google Scholar 

  30. Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol. 2017;24(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  31. Feng Z, Yu X, Jiang M, Zhu L, Zhang Y, Yang W, Xi W, Li G, Qian J. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics. 2019;9(19):5706–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang J, Jiang Y, Li J, He S, Huang J, Pu K. A renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer. Angew Chem Int Ed Engl. 2020;59(11):4415–20.

    Article  CAS  PubMed  Google Scholar 

  33. Shen P, Yang J, Wei W, Li Y, Li D, Zeng H, et al. Effects of fluorescent light-guided transurethral resection on non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int. 2012;110(6b):E209–15.

    Article  PubMed  Google Scholar 

  34. Witjes JA, Babjuk M, Gontero P, Jacqmin D, Karl A, Kruck S, et al. Clinical and cost effectiveness of hexaminolevulinate-guided blue-light cystoscopy: evidence review and updated expert recommendations. Eur Urol. 2014;66(5):863–71.

    Article  PubMed  Google Scholar 

  35. Burggraaf J, Kamerling IMC, Gordon PB, Schrier L, de Kam ML, Kales AJ, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21(8):955–61.

    Article  CAS  PubMed  Google Scholar 

  36. Foersch S, Kiesslich R, Waldner MJ, Delaney P, Galle PR, Neurath MF, et al. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut. 2010;59(8):1046–55.

    Article  PubMed  Google Scholar 

  37. Hattori S, Kojima K, Minoshima K, Yamaha M, Horie M, Sawamura T, Kikuchi A, Deguchi T. Detection of bladder cancer by measuring CD44v6 expression in urine with real-time quantitative reverse transcription polymerase chain reaction. Urology. 2014;83(6):1443.

    Article  PubMed  Google Scholar 

  38. Goetz M, Wang TD. Molecular imaging in gastrointestinal endoscopy. Gastroenterology. 2010;138(3):828–33.

    Article  CAS  PubMed  Google Scholar 

  39. Quan YH, Oh CH, Jung D, Lim JY, Choi BH, Rho J, Choi Y, Han KN, Kim BM, Kim C, Park JH, Kim HK. Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg. 2020;155(8):732–40.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Naselli A, Introini C, Bertolotto F, Spina B, Puppo P. Narrow band imaging for detecting residual/recurrent cancerous tissue during second transurethral resection of newly diagnosed non-muscle-invasive high-grade bladder cancer. BJU Int. 2010;105(2):208–11.

    Article  PubMed  Google Scholar 

  41. Sturm MB, Joshi BP, Lu S, Piraka C, Khondee S, Elmunzer BJ, et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med. 2013;5(184):184ra61.

    Article  PubMed  CAS  Google Scholar 

  42. Pan Y, Volkmer J, Mach KE, Rouse RV, Liu J, Sahoo D, et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci Transl Med. 2014;6(260):260ra148.

    Article  PubMed  CAS  Google Scholar 

  43. Golijanin J, Amin A, Moshnikova A, Brito JM, Tran TY, Adochite R, et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo. Proc Natl Acad Sci U S A. 2016;113(42):11829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Riedl CR, Daniltchenko D, Koenig F, Simak R, Loening SA, Pflueger H. Fluorescence endoscopy with 5-aminolevulinic acid reduces early recurrence rate in superficial bladder cancer. J Urol. 2001;165(4):1121–3.

    Article  CAS  PubMed  Google Scholar 

  45. Gosnell ME, Polikarpov DM, Goldys EM, Zvyagin AV, Gillatt DA. Computer-assisted cystoscopy diagnosis of bladder cancer. Urol Oncol. 2018;36(1):8. e99-8. e15.

    Article  Google Scholar 

  46. Stenzl A, Penkoff H, Dajc-Sommerer E, Zumbraegel A, Hoeltl L, Scholz M, Riedl C, Bugelnig J, Hobisch A, Burger M, Mikuz G, Pichlmeier U. Detection and clinical outcome of urinary bladder cancer with 5-aminolevulinic acid-induced fluorescence cystoscopy: a multicenter randomized, double-blind, placebo-controlled trial. Cancer. 2011;117(5):938–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wenting Shang and Li Peng wrote the manuscript, in addition to designing, performing, and analyzing all experiments. Wenting Shang synthesized and characterized the probe. Kunshan He designed the imaging system. Pengyu Guo assisted with collecting the information on NMIBC patients. Han Deng assisted with the manuscript modification. Yu Liu assisted with the data analysis. Jie Tian and Wanhai Xu designed, supervised, and analyzed all experiments, in addition to assisting with the manuscript preparation.

Corresponding authors

Correspondence to Jie Tian or Wanhai Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenting Shang, Li Peng, Kunshan He, and Pengyu Guo are the parallel first authors.

This article is part of the Topical Collection on Translational research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1878 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, W., Peng, L., He, K. et al. A clinical study of a CD44v6-targeted fluorescent agent for the detection of non-muscle invasive bladder cancer. Eur J Nucl Med Mol Imaging 49, 3033–3045 (2022). https://doi.org/10.1007/s00259-022-05701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05701-3

Keywords

Navigation