Skip to main content

Advertisement

Log in

Targeting visualization of malignant tumor based on the alteration of DWI signal generated by hTERT promoter–driven AQP1 overexpression

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To specifically diagnose malignant tumors in DWI using the human telomerase reverse transcriptase (hTERT) promoter–driven AQP1 expression.

Methods

The human telomerase reverse transcriptase (hTERT) promoter–driven AQP1 gene overexpression lentivirus system (hTERT-AQP1) and cytomegalovirus (CMV) promoter–driven AQP1 gene overexpression lentivirus system (CMV-AQP1) were prepared, and transduced into telomerase-positive and -negative cells. The AQP1 expression and DWI signal intensity (SI) change in transduced cells were analyzed. Balb/C nude mice subcutaneous xenograft models derived from lentivirus-transduced telomerase-positive and -negative cells were used to evaluate AQP1 expression and DWI SI change in vivo. We further established another group of subcutaneous xenograft model using pristine telomerase-positive and -negative cells, followed by injecting the lentiviral vectors intratumorally or intravenously, to determine the malignant tumor-targeted imaging of hTERT-AQP1.

Results

The hTERT-AQP1 and CMV-AQP1 were successfully prepared. After transduction, hTERT-AQP1 could induce the specific overexpression of AQP1 in telomerase-positive cells. Compared with untransduced cells, all CMV-AQP1-pretransduced cells and hTERT-AQP1-pretransduced telomerase-positive cells showed decreased SI and increased apparent diffusion coefficient (ADC) in DWI, while hTERT-AQP1-pretransduced telomerase-negative cells showed no obvious SI and ADC change. Correspondingly, hTERT-AQP1-transduced telomerase-positive tumors and CMV-AQP1-transduced telomerase-positive and -negative tumors showed decreased DWI SI and increased ADC, while hTERT-AQP1-transduced telomerase-negative tumor had no SI and ADC changes. After intratumoral or intravenous injection, CMV-AQP1 could upregulate AQP1 expression and induce DWI SI and ADC alteration in both telomerase-positive and -negative tumors, while hTERT-AQP1 worked in telomerase-positive tumors specifically.

Conclusion

Cancers can be specifically visualized based on the DWI signal alteration which triggered by hTERT-AQP1 lentivirus system that combined AQP1 gene and hTERT promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and materials are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Zhang Y, Zhao J, Yu H, Li P, Liang W, Liu Z, et al. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK). Sci Adv. 2020;6(32):eaba9628. https://doi.org/10.1126/sciadv.aba9628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fontanillas P, Alipanahi B, Furlotte NA, Johnson M, Wilson CH, 23andMe Research Team, et al. Disease risk scores for skin cancers. Nat Commun. 2021;12(1):160. https://doi.org/10.1038/s41467-020-20246-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao H, Ke Z, Yang F, Li K, Chen N, Song L, et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages. Adv Sci. 2021;8(3):2003097. https://doi.org/10.1002/advs.202003097.

    Article  CAS  Google Scholar 

  4. Ulaner GA, Sobol NB, O’Donoghue JA, Kirov AS, Riedl CC, Min R, et al. CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging. Radiology. 2020;295(3):606–15. https://doi.org/10.1148/radiol.2020192621.

    Article  PubMed  Google Scholar 

  5. Savic LJ, Doemel LA, Schobert IT, Montgomery RR, Joshi N, Walsh JJ, et al. Molecular MRI of the immuno-metabolic interplay in a rabbit liver tumor model: a biomarker for resistance mechanisms in tumor-targeted therapy? Radiology. 2020;296(3):575–83. https://doi.org/10.1148/radiol.2020200373.

    Article  PubMed  Google Scholar 

  6. Wang R, Yang H, Fu R, Su Y, Lin X, Jin X, et al. Biomimetic upconversion nanoparticles and gold nanoparticles for novel simultaneous dual-modal imaging-guided photothermal therapy of cancer. Cancers. 2020;12(11):3136. https://doi.org/10.3390/cancers12113136.

    Article  CAS  PubMed Central  Google Scholar 

  7. Chen X, Zhou H, Li X, Duan N, Hu S, Liu Y, et al. Plectin-1 targeted dual-modality nanoparticles for pancreatic cancer imaging. EBioMedicine. 2018;30:129–37. https://doi.org/10.1016/j.ebiom.2018.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu ST, Yang YB, Liang GP, Li C, Chen L, Shi CM, et al. An optimized telomerase-specific lentivirus for optical imaging of tumors. Cancer Res. 2010;70(7):2585–94. https://doi.org/10.1158/0008-5472.CAN-09-3841.

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Gong MF, Yang H, Zhang S, Wang GX, Su TS, et al. MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter. Eur Radiol. 2016;26(11):4089–97. https://doi.org/10.1007/s00330-016-4259-9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wadajkar AS, Dancy JG, Roberts NB, Connolly NP, Strickland DK, Winkles JA, et al. Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release. 2017;267:144–53. https://doi.org/10.1016/j.jconrel.2017.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007;2(3):14–21. https://doi.org/10.1016/S1748-0132(07)70083-X.

    Article  Google Scholar 

  12. Medici S, Peana M, Pelucelli A, Zoroddu MA. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol. 2021;76:17–26. https://doi.org/10.1016/j.semcancer.2021.06.020.

    Article  CAS  PubMed  Google Scholar 

  13. Bondarenko O, Mortimer M, Kahru A, Feliu N, Javed I, Kakinen A, et al. Nanotoxicology and nanomedicine: the Yin and Yang of nano-bio interactions for the new decade. Nano Today. 2021;39:101184. https://doi.org/10.1016/j.nantod.2021.101184.

    Article  CAS  Google Scholar 

  14. Youn H, Chung J-K. Reporter gene imaging. Am J Roentgenol. 2013;201(2):W206–14. https://doi.org/10.2214/AJR.13.10555.

    Article  Google Scholar 

  15. Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics. 2020;10(2):938–55. https://doi.org/10.7150/thno.37443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrar CT, Buhrman JS, Liu G, Kleijn A, Lamfers ML, McMahon MT, et al. Establishing the lysine-rich protein CEST reporter gene as a CEST MR imaging detector for oncolytic virotherapy. Radiology. 2015;275(3):746–54. https://doi.org/10.1148/radiol.14140251.

    Article  PubMed  Google Scholar 

  17. Pereira SM, Moss D, Williams SR, Murray P, Taylor A. Overexpression of the MRI reporter genes ferritin and transferrin receptor affect iron homeostasis and produce limited contrast in mesenchymal stem cells. Int J Mol Sci. 2015;16(7):15481–96. https://doi.org/10.3390/ijms160715481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mukherjee A, Wu D, Davis HC, Shapiro MG. Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun. 2016;7:13891. https://doi.org/10.1038/ncomms13891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan Y, Zhang H, Wang XC, Qin JB, Wang L. The value of multi ultra high-b-value DWI in grading cerebral astrocytomas and its association with aquaporin-4. Br J Radiol. 2018;91(1086):20170696. https://doi.org/10.1259/bjr.20170696.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Zhang H, Zhang R, Zhao Z, Xu Z, Wang L, et al. Investigation of aquaporins and apparent diffusion coefficient from ultra-high b-values in a rat model of diabetic nephropathy. Eur Radiol Exp. 2017;1(1):13. https://doi.org/10.1186/s41747-017-0016-3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem. 1997;272(26):16140–6. https://doi.org/10.1074/jbc.272.26.16140.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang G, Ma W, Dong H, Shu J, Hou W, Guo Y, et al. Based on histogram analysis: ADCaqp derived from ultra-high b-value DWI could be a non-invasive specific biomarker for rectal cancer prognosis. Sci Rep. 2020;10(1):10158. https://doi.org/10.1038/s41598-020-67263-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mukherjee A, Davis HC, Ramesh P, Lu GJ, Shapiro MG. Biomolecular MRI reporters: evolution of new mechanisms. Prog Nucl Magn Reson Spectrosc. 2017;102–103:32–42. https://doi.org/10.1016/j.pnmrs.2017.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Le Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology. 2013;268(2):318–22. https://doi.org/10.1148/radiol.13130420.

    Article  PubMed  Google Scholar 

  25. Hoppe C, Bowles JR, Minchington TG, Sutcliffe C, Upadhyai P, Rattray M, et al. Modulation of the promoter activation rate dictates the transcriptional response to graded BMP signaling levels in the Drosophila embryo. Dev Cell. 2020;54(6):727-741.e727. https://doi.org/10.1016/j.devcel.2020.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slusher AL, Kim JJ, Ludlow AT. The role of alternative RNA splicing in the regulation of hTERT, telomerase, and telomeres: implications for cancer therapeutics. Cancers. 2020;12(6):1514. https://doi.org/10.3390/cancers12061514.

    Article  CAS  PubMed Central  Google Scholar 

  27. Stewart SA, Weinberg RA. Telomerase and human tumorigenesis. Semin Cancer Biol. 2000;10(6):399–406. https://doi.org/10.1006/scbi.2000.0339.

    Article  CAS  PubMed  Google Scholar 

  28. Masutomi K, Hahn WC. Telomerase and tumorigenesis. Cancer Lett. 2003;194(2):163–72. https://doi.org/10.1016/s0304-3835(02)00703-6.

    Article  CAS  PubMed  Google Scholar 

  29. Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci. 2008;99(8):1528–38. https://doi.org/10.1111/j.1349-7006.2008.00878.x.

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal N, Rinaldetti S, Cheikh BB, Zhou Q, Hass EP, Jones RT, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci. 2021;118(38):e2102423118. https://doi.org/10.1073/pnas.2102423118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bajaj S, Kumar MS, Peters G, Mayur Y. Targeting telomerase for its advent in cancer therapeutics. Med Res Rev. 2020;40(5):1871–919. https://doi.org/10.1002/med.21674.

    Article  CAS  PubMed  Google Scholar 

  32. Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C, et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther. 2009;9(6):459–74. https://doi.org/10.2174/156652309790031120.

    Article  CAS  PubMed  Google Scholar 

  33. D’Costa J, Mansfield SG, Humeau LM. Lentiviral vectors in clinical trials: current status. Curr Opin Mol Ther. 2009;11(5):554–64.

    PubMed  Google Scholar 

  34. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018;32(7):1529–41. https://doi.org/10.1038/s41375-018-0106-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gouvarchin Ghaleh HE, Bolandian M, Dorostkar R, Jafari A, Pour MF. Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother. 2020;128:110276. https://doi.org/10.1016/j.biopha.2020.110276.

    Article  CAS  PubMed  Google Scholar 

  36. Padmanabhan P, Otero J, Ray P, Paulmurugan R, Hoffman AR, Gambhir SS, et al. Visualization of telomerase reverse transcriptase (hTERT) promoter activity using a trimodality fusion reporter construct. J Nucl Med. 2006;47(2):270–7.

    CAS  PubMed  Google Scholar 

  37. Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromol. 2014;15(6):1955–69. https://doi.org/10.1021/bm5003009.

    Article  CAS  Google Scholar 

  38. Manoharan D, Das CJ, Aggarwal A, Gupta AK. Diffusion weighted imaging in gynecological malignancies-present and future. World J Radiol. 2016;8(3):288–97. https://doi.org/10.4329/wjr.v8.i3.288.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heidemeier A, Thurner A, Metz C, Pabst T, Heidemeier H, Rasche L, et al. Whole-body MRI with an ultrahigh b-value of 2000 s/mm2 improves the specificity of diffusion-weighted imaging in patients with plasma cell dyscrasias. Acad Radiol. 2022;29(1):e1–8. https://doi.org/10.1016/j.acra.2020.09.016.

    Article  PubMed  Google Scholar 

  40. Gatidis S, Schmidt H, Martirosian P, Nikolaou K, Schwenzer NF. Apparent diffusion coefficient-dependent voxelwise computed diffusion-weighted imaging: an approach for improving SNR and reducing T2 shine-through effects. J Magn Reson Imaging. 2016;43(4):824–32. https://doi.org/10.1002/jmri.25044.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of Chongqing, China (cstc2018jcyjAX0321 and cstc2021jcyj-msxmX1093), Natural Science Foundation of Army Medical University (No. 2019R059 and 2019R020), and Talents project of ChongQing, China (Dong Zhang).

Author information

Authors and Affiliations

Authors

Contributions

LZ, MG, and DZ designed the experiments; LZ and MG prepared the lentivirus; LZ and MG analyzed AQP1 expression; LZ, SL, CC, and SZ conducted the MRI experiments, LZ and ZX established the tumor models; LZ, MG, YL, SX, XK, and TS performed statistical and MRI analysis; LZ, MG, SL, CZ, and DZ interpreted data and wrote, reviewed, revised manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mingfu Gong or Dong Zhang.

Ethics declarations

Ethics approval

All experiments involving animals were performed following the National Institutes of Health guidelines on the use of animals in research and were approved by the Laboratory Animal Welfare and Ethics Committee of the Army Medical University, Chongqing, China.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Theragnostic

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9081 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gong, M., Lei, S. et al. Targeting visualization of malignant tumor based on the alteration of DWI signal generated by hTERT promoter–driven AQP1 overexpression. Eur J Nucl Med Mol Imaging 49, 2310–2322 (2022). https://doi.org/10.1007/s00259-022-05684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05684-1

Keywords

Navigation