Skip to main content
Log in

Supramolecular biomaterials for bio-imaging and imaging-guided therapy

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Benefiting from their unique advantages, including reversibly switchable structures, good biocompatibility, facile functionalization, and sensitive response to biological stimuli, supramolecular biomaterials have been widely applied in biomedicine. In this review, the representative achievements and trends in the design of supramolecular biomaterials (mainly those derived from biomacromolecules) with specific macromolecules including peptides, deoxyribonucleic acid, and polysaccharides, as well as their applications in bio-imaging and imaging-guided therapy are summarized. This review will serve as an important summary and “go for” reference for explorations of the applications of supramolecular biomaterials in bio-imaging and image-guided therapy, and will promote the development of supramolecular chemistry as an emerging interdisciplinary research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lehn JM. Supramolecular chemistry. Science. 1993;260:1762–4.

    Article  CAS  PubMed  Google Scholar 

  2. Lehn JM. Toward self-organization and complex matter. Science. 2002;295:2400–3.

    Article  CAS  PubMed  Google Scholar 

  3. Webber MJ, Appel EA, Meijer E, Langer R. Supramolecular biomaterials. Nat Mater. 2016;15:13–26.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials. 2017;129:1–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goor OJ, Hendrikse SI, Dankers PY, Meijer E. From supramolecular polymers to multi-component biomaterials. Chem Soc Rev. 2017;46:6621–37.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang JP, Huang XC, Chen XM. Supramolecular isomerism in coordination polymers. Chem Soc Rev. 2009;38:2385–96.

    Article  CAS  PubMed  Google Scholar 

  7. Piepenbrock OM, Lloyd GO, Clarke N, Steed JW. Metal-and anion-binding supramolecular gels. Chem Rev. 2010;110:1960–2004.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng B, Wang F, Dong S, Huang F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev. 2012;41:1621–36.

    Article  CAS  PubMed  Google Scholar 

  9. Webber MJ. Engineering responsive supramolecular biomaterials: toward smart therapeutics. Bioeng Transl Med. 2016;1:252–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui H, Xu B. Supramolecular medicine. Chem Soc Rev. 2017;46:6430–2.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han MY. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale. 2013;5:3127–48.

    Article  CAS  PubMed  Google Scholar 

  12. Kim JH, Park K, Nam HY, Lee S, Kim K, Kwon IC. Polymers for bio-imaging. Prog Polym Sci. 2007;32:1031–53.

    Article  CAS  Google Scholar 

  13. Mehwish N, Dou XQ, Zhao Y, Feng CL. Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horiz. 2019;6:14–44.

    Article  CAS  Google Scholar 

  14. Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv Mater. 2019;31:1904329–61.

    Article  CAS  Google Scholar 

  15. Kikuchi K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev. 2010;39:2048–53.

    Article  CAS  PubMed  Google Scholar 

  16. Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2019;31:1805875–906.

    Google Scholar 

  17. Song N, Zhang Z, Liu P, Yang YW, Wang L, Wang D, Tang BZ. Nanomaterials with supramolecular assembly based on AIE luminogens for theranostic applications. Adv Mater. 2020;32:2004208.

    Article  CAS  Google Scholar 

  18. Li J, Wang J, Li H, Song N, Wang D, Tang BZ. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem Soc Rev. 2020;49:1144–72.

    Article  CAS  PubMed  Google Scholar 

  19. Molla MR, Ghosh S. Aqueous self-assembly of chromophore-conjugated amphiphiles. Phys Chem Chem Phys. 2014;16:26672–83.

    Article  CAS  PubMed  Google Scholar 

  20. Chen K, Fu T, Sun W, Huang Q, Zhang P, Zhao Z, Zhang X, Tan W. DNA-supramolecule conjugates in theranostics. Theranostics. 2019;9:3262–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev. 2021;50:2839–91.

    Article  CAS  PubMed  Google Scholar 

  22. Wijnands SPW, Meijer EW, Merkx M. DNA-functionalized supramolecular polymers: dynamic multicomponent assemblies with emergent properties. Bioconjugate Chem. 2019;30:1905–14.

    Article  CAS  Google Scholar 

  23. Bösch CD, Jevric J, Bürki N, Probst M, Langenegger SM, Häner R. Supramolecular assembly of DNA-phenanthrene conjugates into vesicles with light-harvesting properties. Bioconjugate Chem. 2018;29:1505–9.

    Article  Google Scholar 

  24. Kim J, Narayana A, Patel S, Sahay G. Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics. 2019;9:3191–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu G, Jie K, Huang F. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev. 2015;115:7240–303.

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem Soc Rev. 2016;45:1410–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Shi Z, Dong Y, Wu F, Liu D. Responsive DNA-based supramolecular hydrogels. ACS Appl Bio Mater. 2020;3:2827–37.

    Article  CAS  PubMed  Google Scholar 

  28. Du X, Zhou J, Shi J, Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev. 2015;115:13165–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao T, Jia H, Dong Y, Gui S, Liu D. In situ formation of covalent second network in a DNA supramolecular hydrogel and its application for 3D cell imaging. ACS Appl Mater Inter. 2020;12:4185–92.

    Article  CAS  Google Scholar 

  30. Yang Y, Zhu W, Feng L, Chao Y, Yi X, Dong Z, Yang K, Tan W, Liu Z, Chen M. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano lett. 2018;18:6867–75.

    Article  CAS  PubMed  Google Scholar 

  31. Thelu HVP, Albert SK, Golla M, Krishnan N, Ram D, Varghese R, et al. Size controllable DNA nanogels from the self-assembly of DNA nanostructures through multivalent host-guest interactions. Nanoscale. 2018;10:222–30.

    Article  CAS  Google Scholar 

  32. Jang D, Lee YM, Lee J, Doh J, Kim WJ. Remission of lymphoblastic leukaemia in an intravascular fluidic environment by pliable drug carrier with a sliding target ligand. Sci Rep. 2017;7:1–9.

    Article  Google Scholar 

  33. Seo JH, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N. Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J Am Chem Soc. 2013;135:5513–6.

    Article  CAS  PubMed  Google Scholar 

  34. Yu Z, Wang M, Pan W, Wang H, Li N, Tang B. Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy. Chem Sci. 2017;8:4896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang K, Liu Y, Wang Y, Ren Q, Guo H, Matson JB, Chen X, Nie Z. Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials. 2019;223:119460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morgese G, Waal BFM, Varela-Aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring supramolecular polymers to human red blood cells by combining dynamic covalent and non-covalent chemistries. Angew Chem Int Ed. 2020;59:17229–33.

    Article  CAS  Google Scholar 

  37. Gui SL, Huang YY, Hu F, Jin YL, Zhang GX, Zhang DQ, Zhao R. Bioinspired peptide for imaging Hg2+ distribution in living cells and zebrafish based on coordination-mediated supramolecular assembling. Anal Chem. 2018;90:9708–15.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu H, Wang H, Shi B, Shangguan L, Yu G, Mao Z, Huang F. Supramolecular peptide constructed by molecular Lego allowing programmable self-assembly for photodynamic therapy. Nat Commun. 2019;10:2412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  39. He H, Tan W, Guo J, Yi M, Shy AN, Xu B. Enzymatic noncovalent synthesis. Chem Rev. 2020;120:9994–10078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. An HW, Hou D, Zheng R, Wang MD, Zeng XZ, Xu W, et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma. ACS Nano. 2020;4:927–36.

    Article  Google Scholar 

  41. Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y. Coordination-triggered hierarchical folate/zinc supramolecular hydrogels leading to printable biomaterials. ACS Appl Mater Inter. 2018;10:4530–9.

    Article  CAS  Google Scholar 

  42. Sun C, Wang Z, Yang K, Yue L, Cheng Q, Wang R, et al. Polyamine-responsive morphological transformation of a supramolecular peptide for specific drug accumulation and retention in cancer cells. Small. 2021;210:1139–48.

    Google Scholar 

  43. Jiao JB, Wang GZ, Hu XL, Zang Y, Maisonneuve S, Sedgwick AC, et al. Cyclodextrin-based peptide self-assemblies (Spds) that enhance peptide-based fluorescence imaging and antimicrobial efficacy. J Am Chem Soc. 2020;142:1925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA. Structure-function relationships of immunostimulatory polysaccharides: a review. Carbohyd Polym. 2015;132:378–96.

    Article  CAS  Google Scholar 

  45. Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre. 2015;5:31–61.

    Article  CAS  Google Scholar 

  46. Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Rele. 2015;205:206–17.

    Article  CAS  Google Scholar 

  47. Kirschning A, Dibbert N, Dräger G. Chemical functionalization of polysaccharides-towards biocompatible hydrogels for biomedical applications. Chem-Eur J. 2018;24:1231–40.

    Article  CAS  PubMed  Google Scholar 

  48. Yang B, Wei K, Loebel C, Zhang K, Feng Q, Li R, et al. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nat Commun. 2021;12:1–13.

    Google Scholar 

  49. Wei K, Zhu M, Sun Y, Xu J, Feng Q, Bian L, et al. Robust biopolymeric supramolecular “host-guest macromer” hydrogels reinforced by in situ formed multivalent nanoclusters for cartilage regeneration. Macromolecules. 2016;49:866–75.

    Article  CAS  Google Scholar 

  50. Madl AC, Madl CM, Myung D. Injectable cucurbit[8]uril-based supramolecular gelatin hydrogels for cell encapsulation. ACS Macro Lett. 2020;9:619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sonzini S, Ryan STJ, Scherman OA. Supramolecular dimerisation of middle-chain Phe pentapeptides via CB[8] host-guest homoternary complex formation. Chem Commun. 2013;49:8779–81.

    Article  CAS  Google Scholar 

  52. Rowland MJ, Atgie M, Hoogland D, Scherman OA. Preparation and supramolecular recognition of multivalent peptide-polysaccharide conjugates by cucurbit[8]uril in hydrogel formation. Biomacromol. 2015;16:2436–43.

    Article  CAS  Google Scholar 

  53. Rowland MJ, Parkins CC, McAbee JH, Kolb AK, Watts C, Scherman OA, et al. An adherent tissue-inspired hydrogel delivery vehicle utilised in primary human glioma models. Biomaterials. 2018;179:199–208.

    Article  CAS  PubMed  Google Scholar 

  54. Ding YF, Sun T, Li S, Huang Q, Yue L, Wang R, et al. Oral colon-targeted konjac glucomannan hydrogel constructed through noncovalent cross-linking by cucurbit [8] uril for ulcerative colitis therapy. ACS Appl Bio Mater. 2019;3:10–9.

    Article  PubMed  Google Scholar 

  55. Ding YF, Wei J, Li S, Pan YT, Wang LH, Wang R. Host-guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl Mater Interfaces. 2019;11:28665–70.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou WL, Chen Y, Yu Q, Zhang H, Liu ZX, Liu Y, et al. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat Commun. 2020;11:1–10.

    Article  CAS  Google Scholar 

  57. Yang Y, Zhang YM, Li D, Sun HL, Fan HX, Liu Y. Camptothecin-polysaccharide co-assembly and its controlled release. Bioconjugate Chem. 2016;27:2834–8.

    Article  CAS  Google Scholar 

  58. Yang Y, Jia X, Zhang YM, Li N, Liu Y. Supramolecular nanoparticles based on β-CD modified hyaluronic acid for DNA encapsulation and controlled release. Chem Commun. 2018;54:8713–6.

    Article  CAS  Google Scholar 

  59. Hu X, Hou B, Xu Z, Saeed M, Sun F, Zhang W, et al. Supramolecular prodrug nanovectors for active tumor targeting and combination immunotherapy of colorectal cancer. Adv Sci. 2020;7:1903332–46.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Development Fund (FDCT), Macau SAR (0016/2019/AKP and SKL-QRCM(UM)-2020–2022), the National Natural Science Foundation of China (21871301 and 22071275), and Macao Young Scholars Program (AM2020028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruibing Wang.

Ethics declarations

Ethics approval

Not required since no human participants or animals were recruited for this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Theragnostic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Ding, YF., Shui, M. et al. Supramolecular biomaterials for bio-imaging and imaging-guided therapy. Eur J Nucl Med Mol Imaging 49, 1200–1210 (2022). https://doi.org/10.1007/s00259-021-05622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05622-7

Keywords

Navigation