Skip to main content

Integrating artificial intelligence into radiology practice: undergraduate students’ perspective

This is a preview of subscription content, access via your institution.


  1. Reardon S. Rise of robot radiologists. Nature. 2019;576(7787):S54–8.

    CAS  Article  Google Scholar 

  2. Langlotz CP. Will artificial intelligence replace radiologists? Radiol Artif Intell. 2019;1(3):e190058.

    Article  Google Scholar 

  3. Pinto Dos Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R, Maintz D, Baeßler B. Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur Radiol. 2019;29(4):1640–6.

    CAS  Article  Google Scholar 

  4. Pesapane F, Tantrige P, Patella F, Biondetti P, Nicosia L, Ianniello A, Rossi UG, Carrafiello G, Ierardi AM. Myths and facts about artificial intelligence: why machine- and deep-learning will not replace interventional radiologists. Med Oncol (Northwood, London, England). 2020;37(5):40.

    CAS  Article  Google Scholar 

  5. Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, Pinto de Santos D, Coppola F, Morozov S, Zins M, Bohyn C, Koç U, Wu J, Veean S, Fleischmann D, Leiner T, Willemink MJ. An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude. Eur Radiol. 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martín Noguerol T, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A. Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol JACR. 2019;16(9 Pt B):1239–47.

    Article  Google Scholar 

  7. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35.

    Article  Google Scholar 

  8. Hendee WR, Becker GJ, Borgstede JP, Bosma J, Casarella WJ, Erickson BA, Maynard CD, Thrall JH, Wallner PE. Addressing overutilization in medical imaging. Radiology. 2010;257(1):240–5.

    Article  Google Scholar 

  9. Ladapo JA, Blecker S, Douglas PS. Physician decision making and trends in the use of cardiac stress testing in the United States: an analysis of repeated cross-sectional data. Ann Intern Med. 2014;161(7):482–90.

    Article  Google Scholar 

  10. Rocque G, Blayney DW, Jahanzeb M, Knape A, Markham MJ, Pham T, Shelton J, Sudheendra P, Evans T. Choosing wisely in oncology: are we ready for value-based care? J Oncol Pract. 2017;13(11):e935–43.

    Article  Google Scholar 

Download references


We are thankful for the ideas provided in the “Voice of Radiology Blog” section of the official website of the American College of Radiology (URL:

Author information

Authors and Affiliations



A.S.P.M.A. and A.S. contributed to the design and implementation of the work, to the analysis of the data, and to the writing of the manuscript.

Corresponding author

Correspondence to Arosh S. Perera Molligoda Arachchige.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Letter to the Editor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perera Molligoda Arachchige, A.S., Svet, A. Integrating artificial intelligence into radiology practice: undergraduate students’ perspective. Eur J Nucl Med Mol Imaging 48, 4133–4135 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: