Skip to main content

Head-to-head comparison of [68 Ga]Ga-P16-093 and [68 Ga]Ga-PSMA-617 in dynamic PET/CT evaluation of the same group of recurrent prostate cancer patients

Abstract

Purpose

This study was prospectively designed to evaluate the early dynamic organ distribution and tumor detection capability of [68 Ga]Ga-P16-093, which was compared with [68 Ga]Ga-PSMA-617 in the same group of recurrent prostate cancer patients.

Methods

Twenty patients with recurrent prostate cancer were enrolled. In 2 consecutive days, each patient underwent a 60-min dynamic PET/CT scan after intravenous administration of 148–185 MBq (4–5 mCi) [68 Ga]Ga-P16-093 and [68 Ga]Ga-PSMA-617, respectively. Following a low-dose CT scan, serial dynamic PET scans were performed from head to proximal thigh at 9 time points (30 s/bed at 4, 7, 10, 13, and 16 min; 1 min/bed at 20, 30, and 45 min; and 2 min/bed at 60 min). Standardized uptake values were measured for semi-quantitative comparison.

Results

[68 Ga]Ga-P16-093 PET/CT revealed a significantly higher tumor uptake at 4 min (SUVmax 7.88 ± 5.26 vs. 6.01 ± 3.88, P < 0.001), less blood pool retention at 4 min (SUVmean 5.12 ± 1.16 vs. 6.14 ± 0.98, P < 0.001), and lower bladder accumulation at 60 min (SUVmean 31.33 ± 27.47 vs. 48.74 ± 34.01, P = 0.042) than [68 Ga]Ga-PSMA-617 scan. Significantly higher [68 Ga]Ga-P16-093 uptakes were also observed in the parotid gland, liver, spleen, and kidney. Besides, [68 Ga]Ga-P16-093 exhibited a better detectability of tumor than [68 Ga]Ga-PSMA-617 (366 vs. 321, P = 0.009).

Conclusions

[68 Ga]Ga-P16-093 showed advantages over [68 Ga]Ga-PSMA-617 with higher tumor uptakes, tumor-to-blood pool ratio and detection capability, less blood pool, and bladder accumulation in recurrent prostate cancer patients.

Trial registration: [68 Ga]Ga-P16-093 and [68 Ga]Ga-PSMA-617 PET/CT Imaging in the Same Group of Prostate Cancer Patients (NCT04796467, Registered 12 March 2021, retrospectively registered)

URL of registry: https://clinicaltrials.gov/ct2/show/NCT04796467

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Not applicable.

References

  1. 1.

    Paschalis A, de Bono JS. Prostate Cancer 2020: “The times they are a’changing.” Cancer Cell. 2020;38:25–7. https://doi.org/10.1016/j.ccell.2020.06.008.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62. https://doi.org/10.1016/j.eururo.2020.09.042.

  3. 3.

    Li Y, Han D, Wu P, Ren J, Ma S, Zhang J, et al. Comparison of (68)Ga-PSMA-617 PET/CT with mpMRI for the detection of PCa in patients with a PSA level of 4–20 ng/ml before the initial biopsy. Sci Rep. 2020;10:10963. https://doi.org/10.1038/s41598-020-67385-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Privé BM, Israël B, Schilham MGM, Muselaers CHJ, Zámecnik P, Mulders PFA, et al. Evaluating F-18-PSMA-1007-PET in primary prostate cancer and comparing it to multi-parametric MRI and histopathology. Prostate Cancer Prostatic Dis. 2021;24:423–30. https://doi.org/10.1038/s41391-020-00292-2.

    Article  PubMed  Google Scholar 

  5. 5.

    Drost FH, Osses DF, Nieboer D, Steyerberg EW, Bangma CH, Roobol MJ, et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database System Rev. 2019;4:Cd012663. https://doi.org/10.1002/14651858.CD012663.pub2.

  6. 6.

    Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  7. 7.

    Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61. https://doi.org/10.1002/(sici)1097-0142(19980601)82:11%3c2256::aid-cncr22%3e3.0.co;2-s.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–39. https://doi.org/10.1002/jcb.10661.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38:696–701. https://doi.org/10.1016/j.humpath.2006.11.012.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97. https://doi.org/10.1007/s00259-013-2660-z.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Alberts IL, Seide SE, Mingels C, Bohn KP, Shi K, Zacho HD, et al. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: a systematic review and network meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48:2978–89. https://doi.org/10.1007/s00259-021-05210-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63. https://doi.org/10.1001/jamaoncol.2019.0096.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Civelek AC. (68)Ga-PSMA-11 PET: better at detecting prostate cancer than multiparametric MRI? Radiology. 2018;289:738–9. https://doi.org/10.1148/radiol.2018181981.

    Article  PubMed  Google Scholar 

  14. 14.

    Zha Z, Ploessl K, Choi SR, Wu Z, Zhu L, Kung HF. Synthesis and evaluation of a novel urea-based (68)Ga-complex for imaging PSMA binding in tumor. Nucl Med Biol. 2018;59:36–47. https://doi.org/10.1016/j.nucmedbio.2017.12.007.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Green MA, Hutchins GD, Bahler CD, Tann M, Mathias CJ, Territo W, et al. [(68)Ga]Ga-P16-093 as a PSMA-targeted PET radiopharmaceutical for detection of cancer: initial evaluation and comparison with [(68)Ga]Ga-PSMA-11 in prostate cancer patients presenting with biochemical recurrence. Mol Imag Biol. 2020;22:752–63. https://doi.org/10.1007/s11307-019-01421-7.

    CAS  Article  Google Scholar 

  16. 16.

    Eder M, Neels O, Muller M, Bauder-Wust U, Remde Y, Schafer M, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel, Switzerland). 2014;7:779–96. https://doi.org/10.3390/ph7070779.

    CAS  Article  Google Scholar 

  17. 17.

    Mathias CJ, Sun YZ, Welch MJ, Green MA, Thomas JA, Wade KR, et al. Targeting radiopharmaceuticals: comparative biodistribution studies of gallium and indium complexes of multidentate ligands. Int J Rad Appl Instrument Part B Nucl Med Biol. 1988;15:69–81. https://doi.org/10.1016/0883-2897(88)90163-8.

    CAS  Article  Google Scholar 

  18. 18.

    Mathias CJ, Sun YZ, Welch MJ, Connett JM, Philpott GW, Martell AE. N, N′-bis(2-hydroxybenzyl)-1-(4-bromoacetamidobenzyl)-1,2 -ethylenediamine-N, N′-diacetic acid: a new bifunctional chelate for radiolabeling antibodies. Bioconjug Chem. 1990;1:204–11. https://doi.org/10.1021/bc00003a005.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Zoller M, Schuhmacher J, Reed J, Maier-Borst W, Matzku S. Establishment and characterization of monoclonal antibodies against an octahedral gallium chelate suitable for immunoscintigraphy with PET. J Nucl Med. 1992;33:1366–72.

    CAS  PubMed  Google Scholar 

  20. 20.

    Liu C, Liu T, Zhang N, Liu Y, Li N, Du P, et al. (68)Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2018;45:1852–61. https://doi.org/10.1007/s00259-018-4037-9.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Farolfi A, Calderoni L, Mattana F, Mei R, Telo S, Fanti S, et al. Current and emerging clinical applications of PSMA PET diagnostic imaging for prostate cancer. J Nucl Med. 2021;62:596–604. https://doi.org/10.2967/jnumed.120.257238.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wester HJ, Schottelius M. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med. 2019;49:302–12. https://doi.org/10.1053/j.semnuclmed.2019.02.008.

    Article  PubMed  Google Scholar 

  23. 23.

    Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95. https://doi.org/10.1007/s00259-012-2298-2.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benesova M, Eder M, Neels OC, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med. 2015;56:1697–705. https://doi.org/10.2967/jnumed.115.161299.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Benesova M, Schafer M, Bauder-Wust U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20. https://doi.org/10.2967/jnumed.114.147413.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Herrmann K, Bluemel C, Weineisen M, Schottelius M, Wester HJ, Czernin J, et al. Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med. 2015;56:855–61. https://doi.org/10.2967/jnumed.115.156133.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Schaeffer E, Srinivas S, Antonarakis ES, Armstrong AJ, Bekelman JE, Cheng H, et al. NCCN guidelines insights: prostate cancer, version 1.2021. J Natl Comprehen Cancer Netw: JNCCN. 2021;19:134–43. https://doi.org/10.6004/jnccn.2021.0008.

  28. 28.

    Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20. https://doi.org/10.1007/s00259-013-2525-5.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90. https://doi.org/10.2967/jnumed.115.160382.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20:1286–94. https://doi.org/10.1016/S1470-2045(19)30415-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang B, Liu C, Wei Y, Meng J, Zhang Y, Gan H, et al. A prospective trial of (68)Ga-PSMA and (18)F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res. 2020;26:4551–8. https://doi.org/10.1158/1078-0432.CCR-20-0587.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Rauscher I, Krönke M, König M, Gafita A, Maurer T, Horn T, et al. Matched-pair comparison of (68)Ga-PSMA-11 PET/CT and (18)F-PSMA-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J Nucl Med. 2020;61:51–7. https://doi.org/10.2967/jnumed.119.229187.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pernthaler B, Kulnik R, Gstettner C, Salamon S, Aigner RM, Kvaternik H. A prospective head-to-head comparison of 18F-fluciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate cancer in PET/CT. Clin Nucl Med. 2019;44:e566–73. https://doi.org/10.1097/rlu.0000000000002703.

    Article  PubMed  Google Scholar 

  34. 34.

    Uprimny C, Kroiss AS, Decristoforo C, Fritz J, Warwitz B, Scarpa L, et al. Early dynamic imaging in (68)Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. Eur J Nucl Med Mol Imaging. 2017;44:765–75. https://doi.org/10.1007/s00259-016-3578-z.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sachpekidis C, Afshar-Oromieh A, Kopka K, Strauss DS, Pan L, Haberkorn U, et al. (18)F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:592–602. https://doi.org/10.1007/s00259-019-04569-0.

    Article  PubMed  Google Scholar 

  36. 36.

    Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. (68)Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Molec Imaging. 2017;44:1014–24. https://doi.org/10.1007/s00259-017-3670-z.

  37. 37.

    Woythal N, Arsenic R, Kempkensteffen C, Miller K, Janssen JC, Huang K, et al. Immunohistochemical validation of PSMA expression measured by (68)Ga-PSMA PET/CT in primary prostate cancer. J Nucl Med. 2018;59:238–43. https://doi.org/10.2967/jnumed.117.195172.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Weber WA, Czernin J, Anderson CJ, Badawi RD, Barthel H, Bengel F, et al. The future of nuclear medicine, molecular imaging, and theranostics. J Nucl Med. 2020;61:263S-S272. https://doi.org/10.2967/jnumed.120.254532.

    Article  PubMed  Google Scholar 

  39. 39.

    Sartor O, Hope TA, Calais J, Fendler WP. Oliver Sartor talks with Thomas A. Hope, Jeremie Calais, and Wolfgang P. Fendler about FDA approval of PSMA. J Nucl Med. 2021;62:146–8. https://doi.org/10.2967/jnumed.120.261834.

  40. 40.

    Carlucci G, Ippisch R, Slavik R, Mishoe A, Blecha J, Zhu S. (68)Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med. 2021;62:149–55. https://doi.org/10.2967/jnumed.120.260455.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Bagheri MH, Ahlman MA, Lindenberg L, Turkbey B, Lin J, Cahid Civelek A, et al. Advances in medical imaging for the diagnosis and management of common genitourinary cancers. Urol Oncol. 2017;35:473–91. https://doi.org/10.1016/j.urolonc.2017.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Civelek AC, Niglio SA, Malayeri AA, Lin J, Gurram S, Chalfin HJ, et al. Clinical value of (18)FDG PET/MRI in muscle-invasive, locally advanced, and metastatic bladder cancer. Urologic Oncol. 2021;S1078–1439(21)00181–2. https://doi.org/10.1016/j.urolonc.2021.04.024.

Download references

Funding

This study was supported by the Chinese Academy of Medical Science Innovation Fund for Medical Sciences (2019-I2M-1–001), the Chinese Academy of Medical Science Clinical and Translational Medicine Research Foundation (2019XK320032), the National Natural Science Foundation of China (81871392), and the Capital Health Development Scientific Research Project (2018–1-4011).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xinrong Fan, Zhaohui Zhu, Lin Zhu or Hank F. Kung.

Ethics declarations

Ethics approval

Ethical approval was obtained from the Institute Review Board of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and this study was conducted in accordance with the principles of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all participants included in the study.

Conflict of interest

Hank F. Kung is the founder of Five Eleven Pharma, which holds the patent rights for [68 Ga]Ga-P16-093 and related technology.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Genitourinary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Hong, H., Zang, J. et al. Head-to-head comparison of [68 Ga]Ga-P16-093 and [68 Ga]Ga-PSMA-617 in dynamic PET/CT evaluation of the same group of recurrent prostate cancer patients. Eur J Nucl Med Mol Imaging (2021). https://doi.org/10.1007/s00259-021-05539-1

Download citation

Keywords

  • [68 Ga]Ga-P16-093
  • [68 Ga]Ga-PSMA-617
  • Dynamic PET/CT
  • Prostate cancer