Skip to main content

Advertisement

Log in

Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Human ageing is associated with a regional reduction in cerebral neuronal activity as assessed by numerous studies on brain glucose metabolism and perfusion, grey matter (GM) density and white matter (WM) integrity. As glucose metabolism may impact energetics to maintain myelin integrity, but changes in functional connectivity may also alter regional metabolism, we conducted a cross-sectional simultaneous FDG PET/MR study in a large cohort of healthy volunteers with a wide age range, to directly assess the underlying associations between reduced glucose metabolism, GM atrophy and decreased WM integrity in a single ageing cohort.

Methods

In 94 healthy subjects between 19.9 and 82.5 years (mean 50.1 ± 17.1; 47 M/47F, MMSE ≥ 28), simultaneous FDG-PET, structural MR and diffusion tensor imaging (DTI) were performed. Voxel-wise associations between age and grey matter (GM) density, RBV partial-volume corrected (PVC) glucose metabolism, white matter (WM) fractional anisotropy (FA) and mean diffusivity (MD), and age were assessed. Clusters representing changes in glucose metabolism correlating significantly with ageing were used as seed regions for tractography. Both linear and quadratic ageing models were investigated.

Results

An expected age-related reduction in GM density was observed bilaterally in the frontal, lateral and medial temporal cortex, striatum and cerebellum. After PVC, relative FDG uptake was negatively correlated with age in the inferior and midfrontal, cingulate and parietal cortex and subcortical regions, bilaterally. FA decreased with age throughout the entire brain WM. Four white matter tracts were identified connecting brain regions with declining glucose metabolism with age. Within these, relative FDG uptake in both origin and target clusters correlated positively with FA (0.32 ≤ r ≤ 0.71) and negatively with MD (− 0.75 ≤ r ≤  − 0.41).

Conclusion

After appropriate PVC, we demonstrated that regional cerebral glucose metabolic declines with age and that these changes are related to microstructural changes in the interconnecting WM tracts. The temporal course and potential causality between ageing effects on glucose metabolism and WM integrity should be further investigated in longitudinal cohort PET/MR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GM:

Grey matter

WM:

White matter

FDG:

Fluorodeoxyglucose

PET/MR:

Positron emission tomography/magnetic resonance

DTI:

Diffusion tensor imaging

MRI:

Magnetic resonance imaging

FA:

Fractional anisotropy

PVC:

Partial volume correction

MD:

Mean diffusivity

SPM:

Statistical parametric mapping

WMH:

White matter hyperintensities

SPECT:

Single photon emission computed tomography

CBF:

Cerebral blood flow

ASL:

Arterial spin labelling

CSF:

Cerebrospinal fluid

GTM:

Geometric transfer matrix

VOI:

Volume-of-interest

ROI:

Region of interest

MMSE:

Mini-mental state examination

BDI:

Beck’s depression inventory

TOF:

Time of flight

OSEM:

Ordered subset expectation maximization

FWHM:

Full width half maximum

TR:

Repetition time

TE:

Echo time

FLAIR:

Fluid-attenuated inversion recovery

VBM:

Voxel-based morphometry

TIV:

Total intra-cranial volume

FWE:

Family wise error

kE :

Cluster extent

RPD:

Reduction per decade

RBV:

Region-based voxel-wise

FSL:

FMRIB software library

BIC:

Bayesian information criterion

References

  1. DeCarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, et al. Measures of brain morphology and infarction in the Framingham heart study: establishing what is normal. Neurobiol Aging. 2005;26:491–510.

    Article  PubMed  Google Scholar 

  2. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, et al. Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging. 2011;32:916–32.

    Article  PubMed  Google Scholar 

  3. Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14:21–36.

    Article  CAS  PubMed  Google Scholar 

  4. Crivello F, Tzourio-Mazoyer N, Tzourio C, Mazoyer B. Longitudinal assessment of global and regional rate of grey matter atrophy in 1,172 healthy older adults: modulation by sex and age. PLoS One. 2014;9:e114478.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, et al. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging. 2005;26:1261–70.

    Article  PubMed  Google Scholar 

  6. Kennedy KM, Erickson KI, Rodrigue KM, Voss MW, Colcombe SJ, Kramer AF, et al. Age-related differences in regional brain volumes: a comparison of optimized voxel-based morphometry to manual volumetry. Neurobiol Aging. 2009;30:1657–76.

    Article  PubMed  Google Scholar 

  7. Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:64–76.

  8. Cox SR, Ritchie SJ, Tucker-Drob EM, Liewald DC, Hagenaars SP, Davies G, et al. Ageing and brain white matter structure in 3,513 UK Biobank participants. Nat Commun. 2016;7:1–13.

    Article  Google Scholar 

  9. de Groot M, Ikram MA, Akoudad S, Krestin GP, Hofman A, van der Lugt A, et al. Tract-specific white matter degeneration in aging: the Rotterdam Study. Alzheimer’s Dement. 2015;11:321–30.

    Article  Google Scholar 

  10. Hsu JL, Van Hecke W, Bai CH, Lee CH, Tsai YF, Chiu HC, et al. Microstructural white matter changes in normal aging: a diffusion tensor imaging study with higher-order polynomial regression models. Neuroimage. 2010;49:32–43.

    Article  PubMed  Google Scholar 

  11. Salami A, Eriksson J, Nilsson LG, Nyberg L. Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition. Biochim Biophys Acta - Mol Basis Dis. 2012;1822:408–15.

    Article  CAS  Google Scholar 

  12. de Groot M, Cremers LGM, Ikram MA, Hofman A, Krestin GP, van der Lugt A, et al. White matter degeneration with aging: longitudinal diffusion MR imaging analysis. Radiology. 2016;279:532–41.

    Article  PubMed  Google Scholar 

  13. Sexton CE, Walhovd KB, Storsve AB, Tamnes CK, Westlye LT, Johansen-Berg H, et al. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci. 2014;34:15425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, et al. Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex. 2011;21:1426–34.

    Article  PubMed  Google Scholar 

  15. Zhang N, Gordon ML, Ma Y, Chi B, Gomar JJ, Peng S, et al. The age-related perfusion pattern measured with arterial spin labeling MRI in healthy subjects. Front Aging Neurosci. 2018;10:214.

  16. Pagani M, Salmaso D, Jonsson C, Hatherly R, Jacobsson H, Larsson SA, et al. Regional cerebral blood flow as assessed by principal component analysis and 99mTc-HMPAO SPET in healthy subjects at rest: normal distribution and effect of age and gender. Eur J Nucl Med. 2002;29:67–75.

    Article  CAS  Google Scholar 

  17. Ishibashi K, Onishi A, Fujiwara Y, Oda K, Ishiwata K, Ishii K. Longitudinal effects of aging on 18F-FDG distribution in cognitively normal elderly individuals. Sci Rep. 2018;8:11557.

  18. Kakimoto A, Ito S, Okada H, Nishizawa S, Minoshima S, Ouchi Y. Age-related sex-specific changes in brain metabolism and morphology. J Nucl Med. 2016;57:221–5.

    Article  CAS  PubMed  Google Scholar 

  19. Malpetti M, Ballarini T, Presotto L, Garibotto V, Tettamanti M, Perani D. Gender differences in healthy aging and Alzheimer’s dementia: a 18 F-FDG-PET study of brain and cognitive reserve. Hum Brain Mapp. 2017;38:4212–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoshizawa H, Gazes Y, Stern Y, Miyata Y, Uchiyama S. Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Res - Neuroimaging. 2014;221:78–85.

    Article  Google Scholar 

  21. Ishibashi K, Miura Y, Toyohara J, Ishii K, Ishiwata K. Comparison of imaging using 11 C-ITMM and 18 F-FDG for the detection of cerebellar ataxia. J Neurol Sci. 2017;375:97–102.

    Article  CAS  PubMed  Google Scholar 

  22. Fujimoto T, Matsumoto T, Fujita S, Takeuchi K, Nakamura K, Mitsuyama Y, et al. Changes in glucose metabolism due to aging and gender-related differences in the healthy human brain. Psychiatry Res - Neuroimaging. 2008;164:58–72.

    Article  CAS  Google Scholar 

  23. Knopman DS, Jack CR, Wiste HJ, Lundt ES, Weigand SD, Vemuri P, et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging. 2014;35:2096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. Neuroimage. 2014;92:225–36.

    Article  PubMed  Google Scholar 

  25. Petit-Taboué MC, Landeau B, Desson JF, Desgranges B, Baron JC. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage. 1998;7:176–84.

    Article  PubMed  Google Scholar 

  26. Bonte S, Vandemaele P, Verleden S, Audenaert K, Deblaere K, Goethals I, et al. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction. Eur J Nucl Med Mol Imaging. 2017;44:838–49.

    Article  PubMed  Google Scholar 

  27. Van Laere K, Versijpt J, Audenaert K, Koole M, Goethals I, Achten E, et al. 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med. 2001;28:873–87.

    Article  PubMed  Google Scholar 

  28. Mozley PD, Sadek AM, Alavi A, Gur RC, Muenz LR, Bunow BJ, et al. Effects of aging on the cerebral distribution of technetium-99m hexamethylpropylene amine oxime in healthy humans. Eur J Nucl Med. 1997;24:754–61.

    CAS  PubMed  Google Scholar 

  29. Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: an 18F-FDG-PET study of aging. Neuroimage. 2016;132:334–43.

    Article  PubMed  Google Scholar 

  30. Thomas BA, Cuplov V, Bousse A, Mendes A, Thielemans K, Hutton BF, et al. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol. 2016;61:7975–93.

    Article  PubMed  Google Scholar 

  31. Oyama S, Hosoi A, Ibaraki M, McGinnity CJ, Matsubara K, Watanuki S, et al. Error propagation analysis of seven partial volume correction algorithms for [18F]THK-5351 brain PET imaging. EJNMMI Phys. 2020;7:57.

  32. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19.

    Article  PubMed  Google Scholar 

  33. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.

  34. Chételat G, Landeau B, Salmon E, Yakushev I, Bahri MA, Mézenge F, et al. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage. 2013;76:167–77.

    Article  PubMed  Google Scholar 

  35. Inoue K, Ito H, Uchida S, Taki Y, Kinomura S, Tsuji I, et al. Decrease in glucose metabolism in frontal cortex associated with deterioration of microstructure of corpus callosum measured by diffusion tensor imaging in healthy elderly. Hum Brain Mapp. 2008;29:375–84.

    Article  PubMed  Google Scholar 

  36. Kuczynski B, Targan E, Madison C, Weiner M, Zhang Y, Reed B, et al. White matter integrity and cortical metabolic associations in aging and dementia. Alzheimer’s Dement. 2010;6:54–62.

    Article  Google Scholar 

  37. Kochunov P, Ramage AE, Lancaster JL, Robin DA, Narayana S, Coyle T, et al. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. Neuroimage. 2009;45:17–28.

    Article  CAS  PubMed  Google Scholar 

  38. De Leeuw FE, De Groot JC, Achten E, Oudkerk M, Ramos LMP, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rezaei A, Schramm G, Van Laere K, Nuyts J. Estimation of crystal timing properties and efficiencies for the improvement of (joint) maximum-likelihood reconstructions in TOF-PET. IEEE Trans Med Imaging. 2020;39:952–63.

  40. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  41. Yang J, Huang SC, Mega M, Lin KP. Investigation of partial volume correction methods for brain FDG pet studies. IEEE Trans Nucl Sci. 1996;43:3322–7.

    Article  Google Scholar 

  42. Nugent S, Croteau E, Potvin O, Castellano CA, Dieumegarde L, Cunnane SC, et al. Selection of the optimal intensity normalization region for FDG-PET studies of normal aging and Alzheimer’s disease. Sci Rep Nat Res. 2020;10:1–8.

    Google Scholar 

  43. Leemans A, Jeurissen B, Sijbers J, Jones D. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc 17th Sci Meet Int Soc Magn Reson Med. 2009;3537.

  44. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90:773–95.

    Article  Google Scholar 

  45. van Rossum G. Python tutorial. Technical Report CS-R9526. Amsterdam; 1995.

  46. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019; 15: 565–81.

  47. Allen JS, Bruss J, Brown CK, Damasio H. Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging. 2005;26:1245–60.

    Article  PubMed  Google Scholar 

  48. Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K, et al. An unbiased data-driven age-related structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan. Neuroimage. 2018;169:134–44.

    Article  PubMed  Google Scholar 

  49. McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler DJ, Holland D, et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology. 2009;73:457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choy SW, Bagarinao E, Watanabe H, Ho ETW, Maesawa S, Mori D, et al. Changes in white matter fiber density and morphology across the adult lifespan: a cross‐sectional fixel‐based analysis. Hum Brain Mapp. 2020;41:3198–211.

  51. Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP, et al. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without alzheimer disease. J Neuropathol Exp Neurol. 2008;67:1205–12.

    Article  PubMed  Google Scholar 

  52. Scheff SW, Price DA, Sparks DL. Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol Aging. 2001;22:355–65.

    Article  CAS  PubMed  Google Scholar 

  53. Itoh Y, Yamada M, Suematsu N, Matsushita M, Otomo E. An immunohistochemical study of centenarian brains: a comparison. J Neurol Sci. 1998;157:73–81.

    Article  CAS  PubMed  Google Scholar 

  54. Michiels L, Delva A, van Aalst J, Ceccarini J, Vandenberghe W, Vandenbulcke M, et al. Synaptic density in healthy human aging is not influenced by age or sex: a 11C-UCB-J PET study. Neuroimage. 2021;232:117877.

  55. Fjell AM, Westlye LT, Espeseth T, Reinvang I, Walhovd KB, Dale AM. Cortical gray matter atrophy in healthy aging cannot be explained by undetected incipient cognitive disorders: a comment on Burgmans et al. (2009). Neuropsychology. 2010;24:258–66.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bakkour A, Morris JC, Wolk DA, Dickerson BC. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage. 2013;76:332–44.

    Article  PubMed  Google Scholar 

  57. Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR. Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging. 2007;28:1075–87.

    Article  PubMed  Google Scholar 

  58. Oschwald J, Guye S, Liem F, Rast P, Willis S, Röcke C, et al. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev Neurosci. 2019;31:1–57.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hedman AM, van Haren NEM, Schnack HG, Kahn RS, Hulshoff Pol HE. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp. 2012;33:1987–2002.

    Article  PubMed  Google Scholar 

  60. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17:302–16.

    Article  CAS  PubMed  Google Scholar 

  61. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, et al. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage. 2007;35:1231–7.

    Article  PubMed  Google Scholar 

  62. Ibáñez V, Pietrini P, Furey ML, Alexander GE, Millet P, Bokde ALW, et al. Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy. Brain Res Bull. 2004;63:147–54.

    Article  PubMed  Google Scholar 

  63. Curiati PK, Tamashiro-Duran JH, Duran FLS, Buchpiguel CA, Squarzoni P, Romano DC, et al. Age-related metabolic profiles in cognitively healthy elders: results from a voxel-based [18F]fluorodeoxyglucose-positron-emission tomography study with partial volume effects correction. Am J Neuroradiol. 2011;32:560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nugent S, Tremblay S, Chen KW, Ayutyanont N, Roontiva A, Castellano CA, et al. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging. 2014;35:1386–95.

    Article  CAS  PubMed  Google Scholar 

  65. Rathee R, Rallabandi VPS, Roy PK. Age-related differences in white matter integrity in healthy human brain: evidence from structural MRI and diffusion tensor imaging. Magn Reson Insights. 2016;9:9–20.

  66. Catani M, Mesulam M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex. 2008;44:953–61.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Teubner-Rhodes S, Vaden KI, Cute SL, Yeatman JD, Dougherty RF, Eckert MA. Aging-resilient associations between the arcuate fasciculus and vocabulary knowledge: microstructure or morphology? J Neurosci. 2016;36:7210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ikuta T, Gollnick HM, Rutledge AN. Age associated decline in the arcuate fasciculus and IQ. Brain Imaging Behav. 2020;14:362–7.

    Article  PubMed  Google Scholar 

  69. Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–27.

  70. Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV. Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage. 2009;44:1050–62.

    Article  PubMed  Google Scholar 

  71. Yuan R, Di X, Taylor PA, Gohel S, Tsai YH, Biswal BB. Functional topography of the thalamocortical system in human. Brain Struct Funct. 2016;221:1971–84.

    Article  PubMed  Google Scholar 

  72. Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging. 2004;25:5–18.

  73. Suetens K, Nuttin B, Gabriëls L, Van Laere K. Differences in metabolic network modulation between capsulotomy and deep-brain stimulation for refractory obsessive-compulsive disorder. J Nucl Med. 2014;55:951–9.

    Article  PubMed  Google Scholar 

  74. Burgmans S, Van Boxtel MPJ, Vuurman EFPM, Smeets F, Gronenschild EHBM, Uylings HBM, et al. The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology 2009;23:541–50.

  75. Tseng BY, Gundapuneedi T, Khan MA, Diaz-Arrastia R, Levine BD, Lu H, et al. White matter integrity in physically fit older adults. Neuroimage. 2013;82:510–6.

    Article  CAS  PubMed  Google Scholar 

  76. Tournier J-D, Mori S, Leemans A, Morgan RH, Reson M, Author M. Diffusion tensor imaging and beyond NIH public access author manuscript. Magn Reson Med. 2011;65:1532–56.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Raffelt DA, Smith RE, Ridgway GR, Tournier JD, Vaughan DN, Rose S, et al. Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55.

    Article  PubMed  Google Scholar 

  78. Schramm G, Koole M, Willekens SMA, Rezaei A, Van Weehaeghe D, Delso G, et al. Regional accuracy of ZTE-based attenuation correction in static 18F-FDG and dynamic 18F-PE2I brain PET/MR. Front Phys. 2019. https://doi.org/10.3389/fphy.2019.00211.

Download references

Acknowledgements

The authors acknowledge the contributions by Stefanie Willekens, PhD, on data acquisition, Kim Serdons, Pharm PhD and the radiopharmacy team for tracer production, Kwinten Porters, Jef Van Loock, Guido Putzeys, Kris Byloos and Stefan Ghysels for data acquisition, and Ronald Peeters, Nathalie Mertens from the PET/MR physics team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Van Laere.

Ethics declarations

Ethics approval and consent to participate

All procedures performed were in accordance with the ethical institutional standards and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Competing interests

All authors report no relevant financial interests or other potential conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Aalst, J., Devrome, M., Van Weehaeghe, D. et al. Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study. Eur J Nucl Med Mol Imaging 49, 664–680 (2022). https://doi.org/10.1007/s00259-021-05518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05518-6

Keywords

Navigation