Skip to main content
Log in

Magnetic resonance fingerprinting: an overview

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Magnetic resonance fingerprinting (MRF) is an evolving quantitative MRI framework consisting of unique data acquisition, processing, visualization, and interpretation steps. MRF is capable of simultaneously producing multiple high-resolution property maps including T1, T2, M0, ADC, and T2* measurements. While a relatively new technology, MRF has undergone rapid development for a variety of clinical applications from brain tumor characterization and epilepsy imaging to characterization of prostate cancer, cardiac imaging, among others. This paper will provide a brief overview of current state of MRF technology including highlights of technical and clinical advances. We will conclude with a brief discussion of the challenges that need to be overcome to establish MRF as a quantitative imaging biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279:278–86.

    Article  PubMed  Google Scholar 

  3. Ehses P, Seiberlich N, Ma D, Breuer FA, Jakob PM, Griswold MA, et al. IR TrueFISP with a golden-ratio-based radial readout: fast quantification of T1, T2, and proton density. Magn Reson Med. 2013;69:71–81.

    Article  PubMed  Google Scholar 

  4. Warntjes JBM, Dahlqvist O, Lundberg P. Novel method for rapid, simultaneous T1, T2*, and proton density quantification. Magn Reson Med. 2007;57:528–37.

    Article  CAS  PubMed  Google Scholar 

  5. Yeatman JD, Wandell BA, Mezer AA. Lifespan maturation and degeneration of human brain white matter. Nat Commun. Nature Publishing Group. 2014;5:4932.

    Article  CAS  PubMed  Google Scholar 

  6. Agartz I, Sääf J, Wahlund LO, Wetterberg L. T1 and T2 relaxation time estimates in the normal human brain. Radiology. 1991;181:537–43.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Shaffer ML, Eslinger PJ, Sun X, Weitekamp CW, Patel MM, et al. Maturational and aging effects on human brain apparent transverse relaxation. PLoS ONE. Public Library of Science; 2012 [cited 2020 Dec 2];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283700/.

  8. Deoni SCL, Dean DC, Dirks H, Jerskey BA. Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage. Elsevier. 2012;63:1038.

    Article  PubMed  Google Scholar 

  9. Poorman ME, Martin MN, Ma D, McGivney DF, Gulani V, Griswold MA, et al. Magnetic resonance fingerprinting part 1: potential uses, current challenges, and recommendations. J Magn Reson Imaging. 2020;51:675–92.

    Article  PubMed  Google Scholar 

  10. Cloos MA, Assländer J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid radial T1 and T2 mapping of the hip articular cartilage with magnetic resonance fingerprinting. J Magn Reson Imaging JMRI. 2019;50:810–5.

    Article  PubMed  Google Scholar 

  11. Gao Y, Chen Y, Ma D, Jiang Y, Herrmann KA, Vincent JA, et al. Preclinical MR fingerprinting (MRF) at 7 T: effective quantitative imaging for rodent disease models. NMR Biomed. 2015;28:384–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rieger B, Zimmer F, Zapp J, Weingärtner S, Schad LR. Magnetic resonance fingerprinting using echo-planar imaging: joint quantification of T1 and T2∗ relaxation times. Magn Reson Med. 2017;78:1724–33.

    Article  PubMed  Google Scholar 

  13. Hong T, Han D, Kim D-H. Simultaneous estimation of PD, T1 , T2 , T2* , and ∆B0 using magnetic resonance fingerprinting with background gradient compensation. Magn Reson Med. 2019;81:2614–23.

    Article  PubMed  Google Scholar 

  14. Jaubert O, Arrieta C, Cruz G, Bustin A, Schneider T, Georgiopoulos G, et al. Multi-parametric liver tissue characterization using MR fingerprinting: simultaneous T1 , T2 , T2 *, and fat fraction mapping. Magn Reson Med. 2020;84:2625–35.

    Article  CAS  PubMed  Google Scholar 

  15. Wang CY, Coppo S, Mehta BB, Seiberlich N, Yu X, Griswold MA. Magnetic resonance fingerprinting with quadratic RF phase for measurement of T2* simultaneously with δf , T1 , and T2. Magn Reson Med. 2019;81:1849–62.

    Article  PubMed  Google Scholar 

  16. Ma D, Jones SE, Deshmane A, Sakaie K, Pierre EY, Larvie M, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging JMRI. 2019;49:1333–46.

    Article  PubMed  Google Scholar 

  17. Ma D, Jiang Y, Chen Y, McGivney D, Mehta B, Gulani V, et al. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage. Magn Reson Med. 2018;79:2190–7.

    Article  PubMed  Google Scholar 

  18. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74:1621–31.

    Article  CAS  PubMed  Google Scholar 

  19. Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cencini M, Biagi L, Kaggie JD, Schulte RF, Tosetti M, Buonincontri G. Magnetic resonance fingerprinting with dictionary-based fat and water separation (DBFW MRF): a multi-component approach. Magn Reson Med. 2019;81:3032–45.

    Article  PubMed  Google Scholar 

  21. Ostenson J, Damon BM, Welch EB. MR fingerprinting with simultaneous T1, T2, and fat signal fraction estimation with integrated B0 correction reduces bias in water T1 and T2 estimates. Magn Reson Imaging. 2019;60:7–19.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017;78:1812–23.

    Article  PubMed  Google Scholar 

  23. Wright KL, Jiang Y, Ma D, Noll DC, Griswold MA, Gulani V, et al. Estimation of perfusion properties with MR fingerprinting arterial spin labeling. Magn Reson Imaging. 2018;50:68–77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Flassbeck S, Schmidt S, Bachert P, Ladd ME, Schmitter S. Flow MR fingerprinting. Magn Reson Med. 2019;81:2536–50.

    Article  PubMed  Google Scholar 

  25. Heo H-Y, Han Z, Jiang S, Schär M, van Zijl PCM, Zhou J. Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain. NeuroImage. 2019;189:202–13.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Z, Han P, Zhou B, Christodoulou AG, Shaw JL, Deng Z, et al. Chemical exchange saturation transfer fingerprinting for exchange rate quantification. Magn Reson Med. 2018;80:1352–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cohen O, Huang S, McMahon MT, Rosen MS, Farrar CT. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF). Magn Reson Med. 2018;80:2449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao C, Bilgic B, Manhard MK, Zhao B, Cao X, Zhong J, et al. 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. NeuroImage. 2017;162:13–22.

    Article  PubMed  Google Scholar 

  29. Ma D, Pierre EY, Jiang Y, Schluchter MD, Setsompop K, Gulani V, et al. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations. Magn Reson Med. 2016;75:2303–14.

    Article  PubMed  Google Scholar 

  30. Hamilton JI, Jiang Y, Chen Y, Ma D, Lo W-C, Griswold M, et al. MR fingerprinting for rapid quantification of myocardial T1 , T2 , and proton spin density. Magn Reson Med. 2017;77:1446–58.

    Article  PubMed  Google Scholar 

  31. Gunter JL, Bernstein MA, Borowski BJ, Ward CP, Britson PJ, Felmlee JP, et al. Measurement of MRI scanner performance with the ADNI phantom. Med Phys. 2009;36:2193–205.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Price A, Clarke G, Dennis M, Hendrick E, Keener C, Masten J, et al. MRI quality control manual. Am Coll Radiol. 2015.

  33. Keenan KE, Boss M, Jackson EF, Kown S, Jennings D, Russek S. NIST/ISMRM MRI system phantom t1 measurements on multiple MRI systems. 21st Annu Meet ISMRM Salt Lake City. 2013;4338.

  34. Anderson CE, Donnola SB, Jiang Y, Batesole J, Darrah R, Drumm ML, et al. Dual contrast - magnetic resonance fingerprinting (DC-MRF): a platform for simultaneous quantification of multiple MRI contrast agents. Sci Rep. Nature Publishing Group. 2017;7:8431.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med. 2017;78:1452–7.

    Article  CAS  PubMed  Google Scholar 

  36. Panda A, Chen Y, Ropella-Panagis K, Ghodasara S, Stopchinski M, Seyfried N, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging JMRI. 2019;50:1133–43.

    Article  PubMed  Google Scholar 

  37. Körzdörfer G, Kirsch R, Liu K, Pfeuffer J, Hensel B, Jiang Y, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology. 2019;292:429–37.

    Article  PubMed  Google Scholar 

  38. Buonincontri G, Biagi L, Retico A, Cecchi P, Cosottini M, Gallagher FA, et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T. NeuroImage. 2019;195:362–72.

    Article  PubMed  Google Scholar 

  39. Park JE, Kim HS, Kim D, Park SY, Kim JY, Cho SJ, et al. A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer. 2020;20:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, et al. MR fingerprinting of adult brain tumors: initial experience. Am J Neuroradiol. 2017;38:492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dastmalchian S, Kilinc O, Onyewadume L, Tippareddy C, McGivney D, Ma D, et al. Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors. Eur J Nucl Med Mol Imaging. 2020 [cited 2020 Nov 30]; Available from: https://doi.org/10.1007/s00259-020-05037-w.

  42. Tippareddy C. Radiomic analysis of 3D MR fingerprinting in adult brain tumors. Virtual; 2020.

  43. Haubold J, Demircioglu A, Gratz M, Glas M, Wrede K, Sure U, et al. Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR Fingerprinting. Eur J Nucl Med Mol Imaging. 2019 [cited 2020 Apr 15]; Available from: https://doi.org/10.1007/s00259-019-04602-2.

  44. de Blank P, Badve C, Gold DR, Stearns D, Sunshine J, Dastmalchian S, et al. Magnetic resonance fingerprinting to characterize childhood and young adult brain tumors. Pediatr Neurosurg. Karger Publishers. 2019;54:310–8.

    Article  PubMed  Google Scholar 

  45. Breger RK, Yetkin FZ, Fischer ME, Papke RA, Haughton VM, Rimm AA. T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology. 1991;181:545–7.

    Article  CAS  PubMed  Google Scholar 

  46. Cho S, Jones D, Reddick WE, Ogg RJ, Steen RG. Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magn Reson Imaging. 1997;15:1133–43.

    Article  CAS  PubMed  Google Scholar 

  47. Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, et al. Simultaneous T1 and T2 brain Relaxometry in asymptomatic volunteers using magnetic resonance fingerprinting. Tomography. 2015;1:136–44.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen Y, Chen M-H, Baluyot KR, Potts TM, Jimenez J, Lin W, et al. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. NeuroImage. 2019;186:782–93.

    Article  PubMed  Google Scholar 

  49. Liao C, Wang K, Cao X, Li Y, Wu D, Ye H, et al. Detection of lesions in mesial temporal lobe epilepsy by using MR fingerprinting. Radiology. 2018;288:804–12.

    Article  PubMed  Google Scholar 

  50. Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac magnetic resonance fingerprinting: technical overview and initial results. JACC Cardiovasc Imaging. 2018;11:1837–53.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hamilton JI, Jiang Y, Ma D, Lo W-C, Gulani V, Griswold M, et al. Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging. 2018;53:40–51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Hamilton J, Eck B, Griswold M, Seiberlich N. Myocardial T1 and T2 quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T. Magn Reson Med. 2021;85:103–19.

    Article  CAS  PubMed  Google Scholar 

  53. (ISMRM 2018) Cardiac Magnetic Resonance Fingerprinting in Heart Transplant Recipients. [cited 2020 Oct 21]. Available from: http://archive.ismrm.org/2018/0675.html.

  54. Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, et al. Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology. Radiological Society of North America. 2018;290:33–40.

    Article  PubMed  Google Scholar 

  55. Panda A, OʼConnor G, Lo WC, Jiang Y, Margevicius S, Schluchter M, et al. Targeted biopsy validation of peripheral zone prostate cancer characterization with magnetic resonance fingerprinting and diffusion mapping. Investig Radiol. 2019;54:485–93.

    Article  CAS  Google Scholar 

  56. Yu AC, Badve C, Ponsky LE, Pahwa S, Dastmalchian S, Rogers M, et al. Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology. 2017;283:729–38.

    Article  PubMed  Google Scholar 

  57. Panda A, Obmann VC, Lo W-C, Margevicius S, Jiang Y, Schluchter M, et al. MR fingerprinting and ADC mapping for characterization of lesions in the transition zone of the prostate gland. Radiology. 2019;292:685–94.

    Article  PubMed  Google Scholar 

  58. Shiradkar R, Panda A, Leo P, Janowczyk A, Farre X, Janaki N, et al. T1 and T2 MR fingerprinting measurements of prostate cancer and prostatitis correlate with deep learning-derived estimates of epithelium, lumen, and stromal composition on corresponding whole mount histopathology. Eur Radiol. 2020.

  59. Sommer K, Amthor T, Doneva M, Koken P, Meineke J, Börnert P. Towards predicting the encoding capability of MR fingerprinting sequences. Magn Reson Imaging. 2017;41:7–14.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen O, Rosen MS. Algorithm comparison for schedule optimization in MR fingerprinting. Magn Reson Imaging. 2017;41:15–21.

    Article  PubMed  Google Scholar 

  61. Zhao B, Haldar JP, Liao C, Ma D, Jiang Y, Griswold MA, et al. Optimal experiment design for magnetic resonance fingerprinting: Cramér-Rao bound meets spin dynamics. IEEE Trans Med Imaging. 2019;38:844–61.

    Article  Google Scholar 

  62. Kara D, Fan M, Hamilton J, Griswold M, Seiberlich N, Brown R. Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting. Magn Reson Med. 2019;81:3108–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McGivney DF, Boyacioğlu R, Jiang Y, Poorman ME, Seiberlich N, Gulani V, et al. Magnetic resonance fingerprinting review part 2: technique and directions. J Magn Reson Imaging JMRI. 2020;51:993–1007.

    Article  PubMed  Google Scholar 

  64. McGivney DF, Pierre E, Ma D, Jiang Y, Saybasili H, Gulani V, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014;33:2311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Halko N, Martinsson P-G, Shkolnisky Y, Tygert M. An algorithm for the principal component analysis of large data sets. SIAM J Sci Comput. Society for Industrial and Applied Mathematics. 2011;33:2580–94.

    Article  Google Scholar 

  66. Yang M, Ma D, Jiang Y, Hamilton J, Seiberlich N, Griswold MA, et al. Low rank approximation methods for MR fingerprinting with large scale dictionaries. Magn Reson Med. 2018;79:2392–400.

    Article  PubMed  Google Scholar 

  67. Cauley SF, Setsompop K, Ma D, Jiang Y, Ye H, Adalsteinsson E, et al. Fast group matching for MR fingerprinting reconstruction. Magn Reson Med. 2015;74:523–8.

    Article  PubMed  Google Scholar 

  68. Cline CC, Chen X, Mailhe B, Wang Q, Pfeuffer J, Nittka M, et al. AIR-MRF: accelerated iterative reconstruction for magnetic resonance fingerprinting. Magn Reson Imaging. 2017;41:29–40.

    Article  PubMed  Google Scholar 

  69. Wang Z, Zhang J, Cui D, Xie J, Lyu M, Hui ES, et al. Magnetic resonance fingerprinting using a fast dictionary searching algorithm: MRF-ZOOM. IEEE Trans Biomed Eng. 2019;66:1526–35.

    Article  Google Scholar 

  70. Deshmane A, McGivney DF, Ma D, Jiang Y, Badve C, Gulani V, et al. Partial volume mapping using magnetic resonance fingerprinting. NMR Biomed. 2019;32:e4082.

    Article  PubMed  Google Scholar 

  71. McGivney D, Deshmane A, Jiang Y, Ma D, Badve C, Sloan A, et al. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting. Magn Reson Med. 2018;80:159–70.

    Article  PubMed  Google Scholar 

  72. Tang S, Fernandez-Granda C, Lannuzel S, Bernstein B, Lattanzi R, Cloos M, et al. Multicompartment magnetic resonance fingerprinting. Inverse Probl. 2018;34.

  73. (ISMRM 2018) Towards unified colormaps for quantitative MRF data. [cited 2020 Nov 16]. Available from: http://archive.ismrm.org/2018/2894.html.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All of the following authors have contributed substantially to the submitted work.

Charit Tippareddy

• Substantial contributions to the conception and design of the work; the acquisition, analysis, and interpretation of data for the work

• Drafting the manuscript and revising it critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Walter Zhao

• Substantial contributions to the conception and design of the work; and the acquisition of data for the work

• Revising the manuscript critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Jeffrey Sunshine

• Substantial contributions to the conception and design of the work; and the acquisition of data for the work

• Revising the manuscript critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Mark Griswold

• Substantial contributions to the conception and design of the work

• Revising the manuscript critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Dan Ma

• Substantial contributions to the conception and design of the work; the acquisition, analysis, and interpretation of data for the work

• Drafting the manuscript and revising it critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Chaitra Badve

• Substantial contributions to the conception and design of the work; the acquisition, analysis, and interpretation of data for the work

• Drafting the manuscript and revising it critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Corresponding author

Correspondence to Chaitra Badve.

Ethics declarations

Research involving human participants and/or animals

NA

Informed consent

NA

Conflict of interest

Charit Tippareddy and Walter Zhao have nothing to disclose. Case Western Reserve University and University Hospitals receive research support from Siemens. Chaitra Badve, Jeffrey Sunshine, Mark Griswold, and Dan Ma have patent applications on MRF and its applications.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tippareddy, C., Zhao, W., Sunshine, J.L. et al. Magnetic resonance fingerprinting: an overview. Eur J Nucl Med Mol Imaging 48, 4189–4200 (2021). https://doi.org/10.1007/s00259-021-05384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05384-2

Keywords

Navigation