Skip to main content
Log in

An FDG PET/CT metabolic parameter-based nomogram for predicting the early recurrence of hepatocellular carcinoma after liver transplantation

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To construct an FDG PET/CT metabolic parameter-based model to predict early recurrence of hepatocellular carcinoma (HCC) after liver transplantation (LT).

Methods

A total of 62 patients with HCC after LT were enrolled with a follow-up period of 1 year. Basic clinical, pathology, and laboratory data, CT features (CPLC), and PET metabolic parameters (CPLCP) were collected for model construction. A CPLC nomogram without metabolic parameters and a CPLCP nomogram with metabolic parameters were established. The net reclassification index (NRI) and integrated discrimination improvement (IDI) of the two models were calculated. The constructed model was compared with Milan criteria and University of California San Francisco (UCSF) criteria. The time-dependent area under the receiver operating characteristic curve (time-AUC) was used to compare the efficiency of the models, and the bootstrap method was used to for verification. Harrell’s concordance index (C-index) was used to evaluate the performance of these models. Decision curve analysis (DCA) was used to evaluate the clinical practicability of each model.

Results

Thirty out of 62 patients experienced a recurrence during the 1-year follow-up. BCLC stage (P = 0.009), MVI (P = 0.032), AFP (P = 0.004), CTdmax (P = 0.033), and MTV (P = 0.039) were the independent predictors. The CPLC nomogram and the CPLCP nomogram were established. Compared with the CPLC nomogram, the NRI of the CPLCP nomogram increased by 38.98% (95% CI = −18.77–60.43%) and the IDI increased by 4.40% (95% CI = −1.00–16.62%). The AUC value of the CPLCP nomogram was higher than those of Milan criteria and UCSF criteria in the time-AUC curve. Moreover, the CPLCP nomogram had a higher C-index (0.774) than other models. Finally, the DCA curve showed that clinical practicability of the CPLCP nomogram outperformed the Milan criteria and UCSF criteria.

Conclusions

The CPLCP nomogram combining basic clinical data, pathology data, laboratory data, CT features, and PET metabolic parameters showed good efficacy and high clinical practicability in predicting the early recurrence of HCC after LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are not publicly available due to patient privacy concerns, but they are available from the corresponding author upon reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14. https://doi.org/10.1016/s0140-6736(18)30010-2.

    Article  PubMed  Google Scholar 

  3. Kwong A, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, et al. OPTN/SRTR 2018 annual data report: liver. Am J Transplant. 2020;20(Suppl s1):193–299. https://doi.org/10.1111/ajt.15674.

    Article  PubMed  Google Scholar 

  4. EASL Clinical Practice Guidelines. Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019.

    Article  Google Scholar 

  5. Bodzin AS, Lunsford KE, Markovic D, Harlander-Locke MP, Busuttil RW, Agopian VG. Predicting mortality in patients developing recurrent hepatocellular carcinoma after liver transplantation: impact of treatment modality and recurrence characteristics. Ann Surg. 2017;266(1):118–25. https://doi.org/10.1097/sla.0000000000001894.

    Article  PubMed  Google Scholar 

  6. Sapisochin G, Goldaracena N, Astete S, Laurence JM, Davidson D, Rafael E, et al. Benefit of treating hepatocellular carcinoma recurrence after liver transplantation and analysis of prognostic factors for survival in a large Euro-American series. Ann Surg Oncol. 2015;22(7):2286–94. https://doi.org/10.1245/s10434-014-4273-6.

    Article  CAS  PubMed  Google Scholar 

  7. Liang W, Wu L, Ling X, Schroder PM, Ju W, Wang D, et al. Living donor liver transplantation versus deceased donor liver transplantation for hepatocellular carcinoma: a meta-analysis. Liver Transpl. 2012;18(10):1226–36. https://doi.org/10.1002/lt.23490.

    Article  PubMed  Google Scholar 

  8. Fernandez-Sevilla E, Allard MA, Selten J, Golse N, Vibert E, Sa Cunha A, et al. Recurrence of hepatocellular carcinoma after liver transplantation: is there a place for resection? Liver Transpl. 2017;23(4):440–7. https://doi.org/10.1002/lt.24742.

    Article  PubMed  Google Scholar 

  9. de’Angelis N, Landi F, Carra MC, Azoulay D. Managements of recurrent hepatocellular carcinoma after liver transplantation: a systematic review. World J Gastroenterol. 2015;21(39):11185–98. https://doi.org/10.3748/wjg.v21.i39.11185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldaracena N, Gorgen A, Doyle A, Hansen BE, Tomiyama K, Zhang W, et al. Live donor liver transplantation for patients with hepatocellular carcinoma offers increased survival vs. deceased donation. J Hepatol. 2019;70(4):666–73. https://doi.org/10.1016/j.jhep.2018.12.029.

    Article  PubMed  Google Scholar 

  11. Verna EC, Patel YA, Aggarwal A, Desai AP, Frenette C, Pillai AA, et al. Liver transplantation for hepatocellular carcinoma: management after the transplant. Am J Transplant. 2020;20(2):333–47. https://doi.org/10.1111/ajt.15697.

    Article  PubMed  Google Scholar 

  12. Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015;16(13):1344–54. https://doi.org/10.1016/s1470-2045(15)00198-9.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrer-Fàbrega J, Forner A, Liccioni A, Miquel R, Molina V, Navasa M, et al. Prospective validation of ab initio liver transplantation in hepatocellular carcinoma upon detection of risk factors for recurrence after resection. Hepatology. 2016;63(3):839–49. https://doi.org/10.1002/hep.28339.

    Article  PubMed  Google Scholar 

  14. Al-Ameri AAM, Wei X, Wen X, Wei Q, Guo H, Zheng S, et al. Systematic review: risk prediction models for recurrence of hepatocellular carcinoma after liver transplantation. Transpl Int. 2020;33(7):697–712. https://doi.org/10.1111/tri.13585.

    Article  PubMed  Google Scholar 

  15. Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–9. https://doi.org/10.1056/nejm199603143341104.

    Article  CAS  PubMed  Google Scholar 

  16. Yao FY, Ferrell L, Bass NM, Watson JJ, Bacchetti P, Venook A, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology. 2001;33(6):1394–403. https://doi.org/10.1053/jhep.2001.24563.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng SS, Xu X, Wu J, Chen J, Wang WL, Zhang M, et al. Liver transplantation for hepatocellular carcinoma: Hangzhou experiences. Transplantation. 2008;85(12):1726–32. https://doi.org/10.1097/TP.0b013e31816b67e4.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Q, Xia D, Bai W, Wang E, Sun J, Huang M, et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: a multicentre observational study. J Hepatol. 2019;70(5):893–903. https://doi.org/10.1016/j.jhep.2019.01.013.

    Article  PubMed  Google Scholar 

  19. Mazzaferro V, Sposito C, Zhou J, Pinna AD, De Carlis L, Fan J, et al. Metroticket 2.0 model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma. Gastroenterology. 2018;154(1):128–39. https://doi.org/10.1053/j.gastro.2017.09.025.

    Article  PubMed  Google Scholar 

  20. Filgueira NA. Hepatocellular carcinoma recurrence after liver transplantation: risk factors, screening and clinical presentation. World J Hepatol. 2019;11(3):261–72. https://doi.org/10.4254/wjh.v11.i3.261.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10(1):35–43. https://doi.org/10.1016/s1470-2045(08)70284-5.

    Article  PubMed  Google Scholar 

  22. Raj A, McCall J, Gane E. Validation of the “Metroticket” predictor in a cohort of patients transplanted for predominantly HBV-related hepatocellular carcinoma. J Hepatol. 2011;55(5):1063–8. https://doi.org/10.1016/j.jhep.2011.01.052.

    Article  PubMed  Google Scholar 

  23. Kornberg A, Küpper B, Tannapfel A, Büchler P, Krause B, Witt U, et al. Patients with non-[18 F]fludeoxyglucose-avid advanced hepatocellular carcinoma on clinical staging may achieve long-term recurrence-free survival after liver transplantation. Liver Transpl. 2012;18(1):53–61. https://doi.org/10.1002/lt.22416.

    Article  PubMed  Google Scholar 

  24. Takada Y, Kaido T, Shirabe K, Nagano H, Egawa H, Sugawara Y, et al. Significance of preoperative fluorodeoxyglucose-positron emission tomography in prediction of tumor recurrence after liver transplantation for hepatocellular carcinoma patients: a Japanese multicenter study. J Hepatobiliary Pancreat Sci. 2017;24(1):49–57. https://doi.org/10.1002/jhbp.412.

    Article  PubMed  Google Scholar 

  25. Hsu CC, Chen CL, Wang CC, Lin CC, Yong CC, Wang SH, et al. Combination of FDG-PET and UCSF criteria for predicting HCC recurrence after living donor liver transplantation. Transplantation. 2016;100(9):1925–32. https://doi.org/10.1097/tp.0000000000001297.

    Article  CAS  PubMed  Google Scholar 

  26. Marrero JA, Fontana RJ, Barrat A, Askari F, Conjeevaram HS, Su GL, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology. 2005;41(4):707–16. https://doi.org/10.1002/hep.20636.

    Article  PubMed  Google Scholar 

  27. Toso C, Meeberg G, Hernandez-Alejandro R, Dufour JF, Marotta P, Majno P, et al. Total tumor volume and alpha-fetoprotein for selection of transplant candidates with hepatocellular carcinoma: a prospective validation. Hepatology. 2015;62(1):158–65. https://doi.org/10.1002/hep.27787.

    Article  CAS  PubMed  Google Scholar 

  28. Duvoux C, Roudot-Thoraval F, Decaens T, Pessione F, Badran H, Piardi T, et al. Liver transplantation for hepatocellular carcinoma: a model including α-fetoprotein improves the performance of Milan criteria. Gastroenterology. 2012;143(4):986–94.e3; quiz e14–5. https://doi.org/10.1053/j.gastro.2012.05.052.

    Article  CAS  PubMed  Google Scholar 

  29. Giannini EG, Marenco S, Borgonovo G, Savarino V, Farinati F, Del Poggio P, et al. Alpha-fetoprotein has no prognostic role in small hepatocellular carcinoma identified during surveillance in compensated cirrhosis. Hepatology. 2012;56(4):1371–9. https://doi.org/10.1002/hep.25814.

    Article  CAS  PubMed  Google Scholar 

  30. Agopian VG, Harlander-Locke M, Zarrinpar A, Kaldas FM, Farmer DG, Yersiz H, et al. A novel prognostic nomogram accurately predicts hepatocellular carcinoma recurrence after liver transplantation: analysis of 865 consecutive liver transplant recipients. J Am Coll Surg. 2015;220(4):416–27. https://doi.org/10.1016/j.jamcollsurg.2014.12.025.

    Article  PubMed  Google Scholar 

  31. Kim YI, Paeng JC, Cheon GJ, Suh KS, Lee DS, Chung JK, et al. Prediction of Posttransplantation recurrence of hepatocellular carcinoma using metabolic and volumetric indices of 18F-FDG PET/CT. J Nucl Med. 2016;57(7):1045–51. https://doi.org/10.2967/jnumed.115.170076.

    Article  CAS  PubMed  Google Scholar 

  32. Germani G, Gurusamy K, Garcovich M, Toso C, Fede G, Hemming A, et al. Which matters most: number of tumors, size of the largest tumor, or total tumor volume? Liver Transpl. 2011;17(Suppl 2):S58–66. https://doi.org/10.1002/lt.22336.

    Article  PubMed  Google Scholar 

  33. Welling TH, Eddinger K, Carrier K, Zhu D, Kleaveland T, Moore DE, et al. Multicenter study of staging and therapeutic predictors of hepatocellular carcinoma recurrence following transplantation. Liver Transpl. 2018;24(9):1233–42. https://doi.org/10.1002/lt.25194.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song JY, Lee YN, Kim YS, Kim SG, Jin SJ, Park JM, et al. Predictability of preoperative 18F-FDG PET for histopathological differentiation and early recurrence of primary malignant intrahepatic tumors. Nucl Med Commun. 2015;36(4):319–27. https://doi.org/10.1097/MNM.0000000000000254.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang HY, Chen J, Xia CC, Cao LK, Duan T, Song B. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol. 2018;24(22):2348–62. https://doi.org/10.3748/wjg.v24.i22.2348.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee SM, Kim HS, Lee S, Lee JW. Emerging role of 18F-fluorodeoxyglucose positron emission tomography for guiding management of hepatocellular carcinoma. World J Gastroenterol. 2019;25(11):1289–306. https://doi.org/10.3748/wjg.v25.i11.1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park JW, Kim JH, Kim SK, Kang KW, Park KW, Choi JI, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49(12):1912–21. https://doi.org/10.2967/jnumed.108.055087.

    Article  PubMed  Google Scholar 

  38. Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44(2):213–21. https://doi.org/10.1016/S0921-4526(02)01648-4.

    Article  PubMed  Google Scholar 

  39. Yamamoto Y, Nishiyama Y, Kameyama R, Okano K, Kashiwagi H, Deguchi A, et al. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med. 2008;49(8):1245–8. https://doi.org/10.2967/jnumed.108.052639.

    Article  PubMed  Google Scholar 

  40. Talbot JN, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F, et al. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med. 2010;51(11):1699–706. https://doi.org/10.2967/jnumed.110.075507.

    Article  PubMed  Google Scholar 

  41. Guniganti P, Kierans AS. PET/MRI of the hepatobiliary system: review of techniques and applications. Clin Imaging. 2021;71:160–9. https://doi.org/10.1016/j.clinimag.2020.10.056.

    Article  PubMed  Google Scholar 

  42. Kang YK, Choi JY, Paeng JC, Kim YI, Kwon HW, Cheon GJ, et al. Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation. Eur Radiol. 2019;29(11):6009–17. https://doi.org/10.1007/s00330-019-06239-z.

    Article  PubMed  Google Scholar 

  43. Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res. 2021;149:1–61. https://doi.org/10.1016/bs.acr.2020.10.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors read and approved the final manuscript.

Literature search: Wenjie Miao; Study design: Guangjie Yang, Wei Rao, Zhenguang Wang; Data collection: Yangyang Wang, Yan Lei, Yujun Zhao, Ting Yu, Mingming Yu, Fengyu Wu; Data analysis: Wenjie Miao, Guangjie Yang; Manuscript writing: Wenjie Miao; Manuscript review: Pei Nie, Guangjie Yang, Wei Rao, Zhenguang Wang.

Corresponding authors

Correspondence to Guangjie Yang, Wei Rao or Zhenguang Wang.

Ethics declarations

Research involving human participants

All procedures performed on human participants were in accordance with the ethical standards of the Institutional Research Committee of the Affiliated Hospital of Qingdao University (Approval No. QYFY WZLL 25649) and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived for this retrospective study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Digestive tract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, W., Nie, P., Yang, G. et al. An FDG PET/CT metabolic parameter-based nomogram for predicting the early recurrence of hepatocellular carcinoma after liver transplantation. Eur J Nucl Med Mol Imaging 48, 3656–3665 (2021). https://doi.org/10.1007/s00259-021-05328-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05328-w

Keywords

Navigation