High quality imaging and dosimetry for yttrium-90 (90Y) liver radioembolization using a SiPM-based PET/CT scanner

Abstract

Purpose

Transarterial radioembolization (TARE) with yttrium-90 (90Y) microspheres is a liver-directed treatment for primary and secondary hepatic malignancies. Personalized dosimetry aims for maximum treatment effect and reduced toxicity. We aimed to compare pre-treatment voxel-based dosimetry from 99mTc macroaggregated albumin (MAA) SPECT/CT with post-treatment 90Y PET/CT for absorbed dose values, and to evaluate image quality of 90Y SiPM-based PET/CT.

Methods

Forty-two patients (28 men, 14 women, mean age: 67 ± 11 years) with advanced hepatic malignancies were prospectively enrolled. Twenty patients were treated with glass and 22 with resin microspheres. Radiation absorbed doses from planning 99mTc-MAA SPECT/CT and post-therapy 90Y PET/CT were assessed. 90Y PET/CT images were acquired for 20 min and reconstructed to produce 5-, 10-, 15-, and 20-min datasets, then evaluated using the 5-point Likert scale.

Results

The mean administered activity was 3.44 ± 1.5 GBq for glass and 1.62 ± 0.7 GBq for resin microspheres. The mean tumor absorbed doses calculated from 99mTc-MAA SPECT/CT and 90Y PET/CT were 175.69 ± 113.76 Gy and 193.58 ± 111.09 Gy (P = 0.61), respectively for glass microspheres; they were 60.18 ± 42.20 Gy and 70.98 ± 49.65 Gy (P = 0.37), respectively for resin microspheres. The mean normal liver absorbed doses from 99mTc-MAA SPECT/CT and 90Y PET/CT were 32.70 ± 22.25 Gy and 30.62 ± 20.09 Gy (P = 0.77), respectively for glass microspheres; they were 18.33 ± 11.08 Gy and 24.32 ± 15.58 Gy (P = 0.17), respectively for resin microspheres. Image quality of 90Y PET/CT at 5-, 10-, 15-, and 20-min scan time showed a Likert score of 3.6 ± 0.54, 4.57 ± 0.58, 4.84 ± 0.37, and 4.9 ± 0.3, respectively.

Conclusions

99mTc-MAA SPECT/CT demonstrated great accuracy for treatment planning dosimetry. SiPM-based PET/CT scanner showed good image quality at 10-min scan time, acquired in one bed position. A PET/CT scan time of 5 min showed acceptable image quality and suffices for dosimetry and treatment verification. This allows for inclusion of 90Y PET/CT in busy routine clinical workflows. Studies with larger patient cohorts are needed to confirm these findings.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Yes.

References

  1. 1.

    Voutsinas N, Lekperic S, Barazani S, Titano JJ, Heiba SI, Kim E. Treatment of primary liver tumors and liver metastases, Part 1: Nuclear Medicine Techniques. J Nucl Med. 2018;59:1649–54. https://doi.org/10.2967/jnumed.116.186346.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Coldwell D, Sangro B, Salem R, Wasan H, Kennedy A. Radioembolization in the treatment of unresectable liver tumors: experience across a range of primary cancers. Am J Clin Oncol. 2012;35:167–77. https://doi.org/10.1097/COC.0b013e3181f47923.

    Article  PubMed  Google Scholar 

  3. 3.

    Sangro B, Salem R, Kennedy A, Coldwell D, Wasan H. Radioembolization for hepatocellular carcinoma: a review of the evidence and treatment recommendations. Am J Clin Oncol. 2011;34:422–31. https://doi.org/10.1097/COC.0b013e3181df0a50.

    Article  PubMed  Google Scholar 

  4. 4.

    Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54:868–78. https://doi.org/10.1002/hep.24451.

    Article  PubMed  Google Scholar 

  5. 5.

    Seidensticker R, Denecke T, Kraus P, Seidensticker M, Mohnike K, Fahlke J, et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol. 2012;35:1066–73. https://doi.org/10.1007/s00270-011-0234-7.

    Article  PubMed  Google Scholar 

  6. 6.

    Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4:210. https://doi.org/10.3389/fonc.2014.00210.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Garin E, Rolland Y, Laffont S, Edeline J. Clinical impact of (99 m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur J Nucl Med Mol Imaging. 2016;43:559–75. https://doi.org/10.1007/s00259-015-3157-8.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Dezarn WA, Cessna JT, DeWerd LA, Feng W, Gates VL, Halama J, et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys. 2011;38:4824–45. https://doi.org/10.1118/1.3608909.

    Article  PubMed  Google Scholar 

  9. 9.

    Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med. 1999;40:11S–36S.

    CAS  PubMed  Google Scholar 

  10. 10.

    Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM, van den Bosch MA, et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54:1294–301. https://doi.org/10.2967/jnumed.112.117614.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lambert B, Mertens J, Sturm EJ, Stienaers S, Defreyne L, D'Asseler Y. 99mTc-labelled macroaggregated albumin (MAA) scintigraphy for planning treatment with 90Y microspheres. Eur J Nucl Med Mol Imaging. 2010;37:2328–33. https://doi.org/10.1007/s00259-010-1566-2.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ulrich G, Dudeck O, Furth C, Ruf J, Grosser OS, Adolf D, et al. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med. 2013;54:516–22. https://doi.org/10.2967/jnumed.112.112508.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hung JC, Redfern MG, Mahoney DW, Thorson LM, Wiseman GA. Evaluation of macroaggregated albumin particle sizes for use in pulmonary shunt patient studies. J Am Pharm Assoc (Wash). 2000;40:46–51. https://doi.org/10.1016/s1086-5802(16)31035-x.

    CAS  Article  Google Scholar 

  14. 14.

    Van de Wiele C, Maes A, Brugman E, D'Asseler Y, De Spiegeleer B, Mees G, et al. SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging. 2012;39:1646–55. https://doi.org/10.1007/s00259-012-2189-6.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ahmadzadehfar H, Duan H, Haug AR, Walrand S, Hoffmann M. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S115–24. https://doi.org/10.1007/s00259-013-2675-5.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Fabbri C, Sarti G, Cremonesi M, Ferrari M, Di Dia A, Agostini M, et al. Quantitative analysis of 90Y Bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biother Radiopharm. 2009;24:145–54. https://doi.org/10.1089/cbr.2008.0543.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36:1696. https://doi.org/10.1007/s00259-009-1210-1.

    Article  PubMed  Google Scholar 

  18. 18.

    Padia SA, Alessio A, Kwan SW, Lewis DH, Vaidya S, Minoshima S. Comparison of positron emission tomography and bremsstrahlung imaging to detect particle distribution in patients undergoing yttrium-90 radioembolization for large hepatocellular carcinomas or associated portal vein thrombosis. J Vasc Interv Radiol. 2013;24:1147–53. https://doi.org/10.1016/j.jvir.2013.04.018.

    Article  PubMed  Google Scholar 

  19. 19.

    Mikell JK, Mahvash A, Siman W, Mourtada F, Kappadath SC. Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for (90)Y microsphere selective internal radiation therapy. EJNMMI Phys. 2015;2:16. https://doi.org/10.1186/s40658-015-0119-y.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging. 2011;55:168–97.

    CAS  PubMed  Google Scholar 

  21. 21.

    Chiesa C, Mira M, Maccauro M, Spreafico C, Romito R, Morosi C, et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42:1718–38. https://doi.org/10.1007/s00259-015-3068-8.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58:1511–8. https://doi.org/10.2967/jnumed.117.189514.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Baratto L, Duan H, Ferri V, Khalighi M, Iagaru A. The effect of various beta values on image quality and semiquantitative measurements in 68Ga-RM2 and 68Ga-PSMA-11 PET/MRI images reconstructed with a block sequential regularized expectation maximization algorithm. Clin Nucl Med. 2020;45:506–13. https://doi.org/10.1097/RLU.0000000000003075.

    Article  PubMed  Google Scholar 

  24. 24.

    Kao YH, Tan EH, Ng CE, Goh SW. Yttrium-90 time-of-flight PET/CT is superior to Bremsstrahlung SPECT/CT for postradioembolization imaging of microsphere biodistribution. Clin Nucl Med. 2011;36:e186–7. https://doi.org/10.1097/RLU.0b013e31821c9a11.

    Article  PubMed  Google Scholar 

  25. 25.

    Kao YH, Tan EH, Lim KY, Ng CE, Goh SW. Yttrium-90 internal pair production imaging using first generation PET/CT provides high-resolution images for qualitative diagnostic purposes. Br J Radiol. 2012;85:1018–9. https://doi.org/10.1259/bjr/33524085.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One. 2013;8:e55742. https://doi.org/10.1371/journal.pone.0055742.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kunnen B, Beijst C, Lam M, Viergever MA, de Jong H. Comparison of the biograph vision and biograph mCT for quantitative (90)Y PET/CT imaging for radioembolisation. EJNMMI Phys. 2020;7:14. https://doi.org/10.1186/s40658-020-0283-6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Todica A, et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med. 2015;56:1654–60. https://doi.org/10.2967/jnumed.115.162685.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Garin E, Rolland Y, Pracht M, Le Sourd S, Laffont S, Mesbah H, et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with (90) Y-loaded glass microsphere radioembolization. Liver Int. 2017;37:101–10. https://doi.org/10.1111/liv.13220.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Bartenstein P, et al. Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization. J Nucl Med. 2015;56:333–8. https://doi.org/10.2967/jnumed.114.150565.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Haste P, Tann M, Persohn S, LaRoche T, Aaron V, Mauxion T, et al. Correlation of technetium-99 m macroaggregated albumin and yttrium-90 glass microsphere biodistribution in hepatocellular carcinoma: a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT. J Vasc Interv Radiol. 2017;28:722–30 e1. https://doi.org/10.1016/j.jvir.2016.12.1221.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was partially supported by GE Healthcare.

Author information

Affiliations

Authors

Contributions

HD: content planning, data analyses, and manuscript writing and editing; MHK: data analyses and manuscript editing; VF: statistical analyses and manuscript editing; LB: data analyses and manuscript editing; SMS: concept planning and data manuscript editing; DYS: content planning and manuscript editing; AI content planning and manuscript editing

Corresponding author

Correspondence to Andrei Iagaru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Yes.

Consent to participate

Yes.

Consent for publication

Yes.

Code availability

Yes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dosimetry

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Khalaf, M.H., Ferri, V. et al. High quality imaging and dosimetry for yttrium-90 (90Y) liver radioembolization using a SiPM-based PET/CT scanner. Eur J Nucl Med Mol Imaging (2021). https://doi.org/10.1007/s00259-021-05188-4

Download citation

Keywords

  • 90Y
  • Silicon photomultiplier
  • PET/CT
  • Radioembolization
  • SIRT
  • Liver
  • Dosimetry