Skip to main content

Advertisement

Log in

Indication of retrograde tau spreading along Braak stages and functional connectivity pathways

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Tau pathology progression in Alzheimer’s disease (AD) is explained through the network degeneration hypothesis and the neuropathological Braak stages; however, the compatibility of these models remains unclear.

Methods

We utilized [18F]AV-1451 tau-PET scans of 39 subjects with AD and 39 sex-matched amyloid-negative healthy controls (HC) in the ADNI (Alzheimer’s Disease Neuroimaging Initiative) dataset. The peak cluster of tau-tracer uptake was identified in each Braak stage of neuropathological tau deposition and used to create a seed-based functional connectivity network (FCN) using 198 HC subjects, to identify healthy networks unaffected by neurodegeneration.

Results

Voxel-wise tau deposition was both significantly higher inside relative to outside FCNs and correlated significantly and positively with levels of healthy functional connectivity. Within many isolated Braak stages and regions, the correlation between tau and intrinsic functional connectivity was significantly stronger than it was across the whole brain. In this way, each peak cluster of tau was related to multiple Braak stages traditionally associated with both earlier and later stages of disease.

Conclusion

We show specificity of healthy FCN topography for AD-pathological tau as well as positive voxel-by-voxel correlations between pathological tau and healthy functional connectivity. We propose a model of “up- and downstream” functional tau progression, suggesting that tau pathology evolves along functional connectivity networks not only “downstream” (i.e., along the expected sequence of the established Braak stages) but also in part “upstream” or “retrograde” (i.e., against the expected sequence of the established Braak stages), with pathology in earlier Braak stages intensified by its functional relationship to later disease stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol. 2006;60:660–7.

    Article  PubMed  Google Scholar 

  2. Seeley WW. Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Curr Opin Neurol. 2008;21:701–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buckner RL. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25:7709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, et al. Functional connectivity associated with tau levels in ageing, Alzheimer’s, and small vessel disease. Brain. 2019;142:1093–107.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tahmasian M, Shao J, Meng C, Grimmer T, Diehl-Schmid J, Yousefi BH, et al. Based on the network degeneration hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid PET/MR study. J Nucl Med. 2016;57:410–5.

    Article  CAS  PubMed  Google Scholar 

  7. Tahmasian M, Pasquini L, Scherr M, Meng C, Förster S, Mulej Bratec S, et al. The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology. 2015;84:1956–63.

    Article  CAS  PubMed  Google Scholar 

  8. Hansson O, Grothe MJ, Strandberg TO, Ohlsson T, Hägerström D, Jögi J, et al. Tau pathology distribution in Alzheimer’s disease corresponds differentially to cognition-relevant functional brain networks. Front Neurosci. 2017;11:167.

  9. Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K, et al. Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2018;141:550–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur ÖA, et al. Networks of tau distribution in Alzheimer’s disease. Brain. 2018;2:568–81.

  11. Jones DT, Graff-Radford J, Lowe VJ, Wiste HJ, Gunter JL, Senjem ML, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex. 2017;97:143–59.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82:239–59.

  13. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, et al. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem. 2013;288:1856–70.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathologica. 2014;127:667–83.

  15. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82:1271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zempel H, Thies E, Mandelkow E, Mandelkow E-M. A Oligomers cause localized Ca2+ elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30:11938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum: tau and amyloid in AD. Ann Neurol. 2016;80:247–58.

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, et al. Regional profiles of the candidate tau PET ligand 18 F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–50.

    Article  PubMed  Google Scholar 

  19. Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89:971–82.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27:685–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez-Escamilla G, Lange C, Teipel S, Buchert R, Grothe MJ. PETPVE12: an SPM toolbox for partial volume effects correction in brain PET–application to amyloid imaging with AV45-PET. NeuroImage. 2017;147:669–77.

    Article  PubMed  Google Scholar 

  22. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33:127–38.

    Article  PubMed  Google Scholar 

  23. Baker SL, Maass A, Jagust WJ. Considerations and code for partial volume correcting [18F]-AV-1451 tau PET data. Data Brief. 2017;15:648–57.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl). 2005;210:343–52.

    Article  CAS  Google Scholar 

  25. Hoenig MC, Bischof GN, Hammes J, Faber J, Fliessbach K, van Eimeren T, et al. Tau pathology and cognitive reserve in Alzheimer’s disease. Neurobiol Aging. 2017;57:1–7.

    Article  CAS  PubMed  Google Scholar 

  26. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci. 2010;107:4734–9.

    Article  CAS  PubMed  Google Scholar 

  27. Yan. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13

  28. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014;84:320–41.

    Article  PubMed  Google Scholar 

  29. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage. 2009;44:893–905.

    Article  PubMed  Google Scholar 

  30. Chai XJ, Castañón AN, Öngür D, Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. NeuroImage. 2012;59:1420–8.

    Article  PubMed  Google Scholar 

  31. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101:3270–83.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35:346–55.

    Article  CAS  PubMed  Google Scholar 

  33. Diedenhofen B, Musch J. cocor: A Comprehensive solution for the statistical comparison of correlations. PLoS One. 2015;10:e0121945.

  34. Chien D, Shadfar B, Katrin SA, C WJ, Fanrong M, Min-Ying S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimeraposs Dis. 2013;38:171–84.

  35. Vermersch P, Frigard B, David J-P, Fallet-Bianco C, Delacourte A. Presence of abnormally phosphorylated Tau proteins in the entorhinal cortex of aged non-demented subjects. Neurosci Lett. 1992;144:143–6.

    Article  CAS  PubMed  Google Scholar 

  36. Yang W, Ang LC, Strong MJ. Tau protein aggregation in the frontal and entorhinal cortices as a function of aging. Dev Brain Res. 2005;156:127–38.

    Article  CAS  Google Scholar 

  37. Vermersch P, David J-P, Frigard B, Fallet-Bianco C, Wattez A, Petit H, et al. Cortical mapping of Alzheimer pathology in brains of aged non-demented subjects. Prog Neuro-Psychopharmacol Biol Psychiatry. 1995;19:1035–47.

    Article  CAS  Google Scholar 

  38. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29:1860–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Braak H, Del Tredici K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol (Berl). 2011;121:589–95.

    Article  CAS  Google Scholar 

  40. Prusiner SB. Some speculations about prions, amyloid, and Alzheimer’s disease. N Engl J Med. 1984;310:661–3.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raj A, Kuceyeski A, Weiner M. A network diffusion model of disease progression in dementia. Neuron. 2012;73:1204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48.

    Article  CAS  PubMed  Google Scholar 

  44. de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. Sporns O, editor. PLoS Comput Biol. 2012;e1002582:8.

    Google Scholar 

  45. Appel SH. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and alzheimer disease. Ann Neurol. 1981;10:499–505.

    Article  CAS  PubMed  Google Scholar 

  46. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM-Y. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci. 2013;33:1024–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stancu I-C, Vasconcelos B, Ris L, Wang P, Villers A, Peeraer E, et al. Templated misfolding of tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in tau transgenic mice. Acta Neuropathol (Berl). 2015;129:875–94.

    Article  CAS  Google Scholar 

  48. Franzmeier N, Dewenter A, Frontzkowski L, Dichgans M, Rubinski A, Neitzel J, et al. Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer’s disease. Sci Adv. 2020;6:eabd1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vogel JW, Mattsson N, Iturria-Medina Y, Strandberg OT, Schöll M, Dansereau C, et al. Data-driven approaches for tau-PET imaging biomarkers in Alzheimer’s disease. Hum Brain Mapp. 2019;40:638–51.

    Article  PubMed  Google Scholar 

  50. Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139:1551–67.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011;10:785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ossenkoppele R, Lyoo CH, Sudre CH, Westen D, Cho H, Ryu YH, et al. Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. Alzheimers Dement. 2020;16:335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Day GS, Gordon BA, Jackson K, Christensen JJ, Rosana Ponisio M, Su Y, et al. Tau-PET binding distinguishes patients with early-stage posterior cortical atrophy from amnestic Alzheimer disease dementia. Alzheimer Dis Assoc Disord. 2017;31:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, et al. Characterizing the spatiotemporal variability of Alzheimer's disease pathology. medRxiv. 2020.

  55. Palop JJ, Mucke L. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13:812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with 18F-Florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.

    Article  PubMed  Google Scholar 

  57. Vogel JW, Iturria-Medina Y, Strandberg OT, Smith R, Levitis E, Evans AC, et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat Commun. 2020;11:2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the patients who participated in this study as well as their friends and family, and the staff at the University Hospital of Cologne Department of Nuclear Medicine. We thank Michael Greicius, M.D., Ph.D., and Mojtaba Zarei, M.D., Ph.D., for their helpful comments. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Funding

This project was supported by funding from the DFG (German Research Foundation) DR 445/9-1 to A.D. and T.v.E., a Fulbright Program grant to J.S. sponsored by the Bureau of Educational and Cultural Affairs of the United States Department of State and administered by the Institute of International Education. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.D., G.B., and J.S. conceived the project. All authors designed and executed the experiments to analyze the data and interpret the results. J.S., G.B., and A.D. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Joseph Seemiller.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors; all imaging data was obtained through independent repositories as described in methods.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology – Dementia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seemiller, J., Bischof, G.N., Hoenig, M.C. et al. Indication of retrograde tau spreading along Braak stages and functional connectivity pathways. Eur J Nucl Med Mol Imaging 48, 2272–2282 (2021). https://doi.org/10.1007/s00259-020-05183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-05183-1

Keywords

Navigation