Skip to main content

Advertisement

Log in

Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2021

This article has been updated

Abstract

Introduction

Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited.

Methods and Scope

This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009–2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn’s disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures.

Conclusion

Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Schwartz MA. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2010;2(12):a005066.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupack DG, Cheresh DA. Integrins and Angiogenesis. Curr Top Dev Biol. 2004;64:207–38.

    CAS  PubMed  Google Scholar 

  3. Zanotelli MR, Reinhart-King CA. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol. 2018;1092:91–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    CAS  PubMed  Google Scholar 

  5. Cameliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Google Scholar 

  6. Chen H, Niu G, Wu H, Chen X. Clinical application of radiolabeled RGD-peptides for PET imaging of integrin αVβ3. Theranostics. 2016;6:78–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Debordeaux F, Chansel-Debordeaux L, Pinaquy J-B, Fernandez P, Shultz J. What about αVβ3 integrins in molecular imaging in oncology? Nucl Med Biol. 2018;62–63:31–46.

    PubMed  Google Scholar 

  8. Hu G, Liu C, Liao Y, Yang L, Huang R, et al. Ultrasound molecular imaging of arterial thrombi with novel microbubbles modified by cyclic RGD in vitro and in vivo. Thromb Haemost. 2012;107:172–83.

  9. Rojas JD, Dayton PA. In vivo molecular imaging using low-boiling-point phase-change contrast agents: a proof of concept study. Ultrasound Med Biol. 2018;45(1):177–91.

  10. Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, et al. RGD-labeled USPIO inhibits adhesion and endocytotic activity of αVβ3-integrin expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology. 2009;253:462–9.

  11. Xin X, Sha H, Shen J, Zhang B, Zhu B, et al. Coupling Gd-DTPA with a bispesific recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI. Oncol Rep. 2016;35:3227–35.

  12. Li F, Yan H, Wang J, Li C, Wu J, et al. Non-invasively differentiating extent of liver fibrosis by visualizing hepatic integrin αVβ3 expression with an MRI modality in mice. Biomaterials. 2016;102:162–74.

  13. Haung R, Vider J, Kovar JL, Olive DM, Mellinghoff IK, et al. Integrin αVβ3-targeted IRDye 800 CW near-infrared imaging of glioblastoma. Clin Cancer Res. 2012;8:5731–40.

  14. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin αVβ3 in brain tumour xenografts. Cancer Res. 2004;64:8009–14.

  15. Kwon S, Ke S, Houston JP, Wang W, Wu Q, et al. Imaging dose-dependent pharmacokinetics of an RGD-flourescent dye conjugate targeted to αVβ3 receptor expressed in Kaposi’s sarcoma. Mol Imaging. 2005;4:75–87.

  16. Xiao Y, Zhang Q, Wang Y, Wang B, Sun F, et al. Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics. 2018;8(11):3111–25.

  17. Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol. 2013;31:148–53.

    CAS  PubMed  Google Scholar 

  18. Verbeek FPR, Van der Vorst JR, Tummer QRJG, Boonstra MC, De Rooij KE, et al. Near-infrared fluorescent imaging of both colorectal cancer and ureters using a low-dose integrin targeting probe. Ann Surg Oncol. 2014;21:528–37.

    PubMed Central  Google Scholar 

  19. Song YS, Kim JH, Lee BC, Jung JK, Park HS, et al. Biodistribution and internal radiation dosimetry of 99mTc-IDA-D[c(RGDfK)]2(BIK-505), a novel SPECT radiotracer for imaging of integrin αVβ3 expression. Cancer Biother Radiopharm. 2018;33:396–402.

  20. Lee BC, Moon BS, Kim JS, Jung JH, Park HS, et al. Synthesis and biological evaluation of RGD peptides with 99mTc/188Re chelated iminodiacetate core: highly enhance uptake and excretion kinetics of theranostics against tumour angiogenesis. RSC Adv. 2013;3:782–92.

  21. Dearling JL, Barnes JW, Panigarphy D, Zimmerman RE, Fahey F, et al. Specific uptake of 99mTc-NC100692, an a αVβ3-targeted imaging probe, in subcutaneous and orthotopic tumours. Nucl Med Biol. 2013;40:788–94.

  22. Edwards D, Jones P, Haramis H, Battle M, Lear R, et al. 99mTc-NC100692 – a tracer for imaging vitronectin receptors associated with angiogenesis: a preclinical investigation. Nucl Med Biol. 2008;35:365–75.

  23. Jia B, Liu Z, Zhu Z, Shi J, Jin X, et al. Blood clearance kinetics, biodistribution and radiation dosimetry of a kit-formulated integrin αVβ3 selective radiotracer 99mTc-3PRGD2 in non-human primates. Mol Imaging Biol. 2011;13:730–6.

  24. Jin X, Liang N, Wang M, Meng Y, Jia B, et al. Integrin imaging with 99mTc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from non-small cell lung can-cer. Radiology. 2016;281:958–66.

  25. Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, et al. Imaging of metastatic melanoma utilizing a technetium-99m labeled RGD-containing synthetic peptide. Eur J Nucl Med. 1998;25:1383–9.

  26. Costopoulos B, Varvarigou AD, Sivolapenko G. Radiochemical and radiobiological evaluation of a synthethic peptide labeled with 99mTc [abstr]. In: Proceedings of the 8th ISORBE congress, May 1997. Castel Gandolfo, Rome Italy.

  27. Terry SY, Abiraj K, Frielink C, Van Dijk LK, Bussink J, et al. Imaging integrin αVβ3 on blood vessels with 111In-RGD2 in head and neck tumor xenografts. J Nucl Med. 2014;55:281–6.

  28. Terry SY, Abiraj K, Lok J, Gerrits D, Franssen GM, et al. Can 111In-RGD2 monitor respons to therapy in head and neck tumour xenografts? J Nucl Med. 2014;55:1849–55.

  29. Haubner R, Wester HJ, Burkhart F, Senekowitch-Schmidtke R, Weber W, et al. Glycocylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med. 2001;42:326–66.

  30. Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol. 2004;31:11–9.

  31. Hauber R, Kuhnast B, Mang C, Weber WA, Kessler H, et al. [18F]Galacto-RGD synthesis, radiolabeling, metabolic stability and radiation dose estimates. Bioconjug Chem. 2004;15:61–9.

  32. Beer AJ, Haubner R, Wolf I, Goebel M, Luderschmidt S, et al. PET-based human dosimetry of 18F-Galacto-RGD a new radiotracer for imaging αVβ3 expression. J Nucl Med. 2006;47:763–9.

  33. Wan W, Guo N, Pan D, Yu C, Weng Y, et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med. 2013;54:691–8.

  34. Morrison MS, Ricketts SA, Barnett J, Cuthbertson A, Tessier J, et al. Use of a novel arg-gly-asp radioligand. 18F-AH111585 to determine changes in tumor vascularity after antitumor therapy. J Nucl Med. 2009;50:116–22.

  35. McParland BJ, Miller MP, Spinks TJ, Kenny LM, Osmon S, et al. The biodistribution and radiation dosimetry of the Arg-Gly-asp peptide 18F-AH111585 in healthy volunteers. J Nucl Med. 2008;49:1664–7.

  36. Chen X, Park P, Shahinian AH, Tohme M, Khankaldyyan V, et al. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol. 2004;31:179–89.

  37. Dumont RA, Hildebrandt I, Su H, Haubner R, Resichl G, et al. Noninvasive imaging of αVβ3 function as a predictor of the antimigratory and antiproliferative effects of dasatinib. Cancer Res. 2009;69:3173–9.

  38. Lucente E, Liu H, Liu Y, Hu X, Lacivita E, et al. Novel 64Cu labeled RGD2-BBN heterotrimers for PET imaging of prostate cancer. Bioconjug Chem. 2018;29:1595–604.

  39. Notni J, Pohle K, Wester HJ. Be spoilt for choice with radiolabeled RGD peptides: preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl Med Biol. 2012;40:33–41.

  40. Decristoforo C, Gonzalez IH, Rupprich M, Schwarz S, Virgolini I, et al. [68Ga]DOTA-RGD for the non-invasive determination of the αVβ3 integrin expression. J Nucl Med. 2006;47(S1):154P.

  41. Kim JH, Lee JS, Kang KW, Lee HY, Han SW, et al. Whole-body distribution and radiation dosimetry of 68Ga-NOTA-RGD, a positron emission tomography agent for angiogensis imaging. Cancer Biother Radiopharm. 2012;27:65–71.

  42. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, et al. Preparation of a promising angiogenesis PET imaging agent 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclonanone-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008;49:830–6.

  43. Ebenhan T, Schoeman I, Rossouw DD, Grobler A, Marjanovic-Painter B, et al. Evaluation of a flexible NOTA-RGD kit solution using gallium-68 from different 68Ge.68Ga-generators: pharmacokinetics and biodistribution in nonhuman primates and demonstration of solitary pulmonary nodule imaging in humans. Mol Imaging Biol. 2016;19:469–82.

  44. Pohle K, Notni J, Bussemer J, Kessler H, Schwaiger M, et al. Ga-68-NODAGA-RGD is a suitable substitute for F-18-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol. 2012;39:777–84.

  45. Gnesin S, Mitsakis P, Cicone F, Deshayes E, Dunet V, et al. First in-human radiation dosimetry of 68Ga-NODAGA-RGDyK. Eur J Nucl Med Mol Imaging Res. 2017;7:43.

  46. Satpati D, Sharma R, Kumar C, Sarma HD, Dash A. 68Ga-chelation and comparative evaluation of N,N’-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N’diacetic acid (HBED-CC) conjugated NGR and RGD peptides as tumor targeted molecular imaging probes. Med Chem Comm. 2017;8:673–9.

  47. Knetsch PA, Zhai C, Rangger C, Blatzer M, Haas H, et al. [68Ga]FSC-(RGD)3 a trimetric RGD peptide for imaging αVβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol. 2015;42:115–22.

  48. Knetsch PA, Petrik M, Rangger C, Seidel G, Pietzsch HJ, et al. [68Ga]NS3-RGD and [68]Oxo-DO3A-RGD for imaging α(v)β3 integrin expression: synthesis, evaluation and comparison. Nucl Med Biol. 2013;40:65–72.

  49. Zhai C, Summer D, Rannger C, Franssen GM, Laverman P, et al. Novel biofunctional cyclic chelator of 89Zr labeling – radiolabeling and targeting properties of RGD conjugates. Mol Pharm. 2015;12:2142–50.

  50. Hernandez R, Valdovinos HF, Yang Y, Chakravarty R, Hong H, et al. 44Sc: an attractive isotope for peptide-based PET imaging. Mol Pharm. 2014;11:2954–61.

  51. Zang J, Mao F, Niu G, Peng L, Lang L, et al. 68Ga-BBN-RGD PET/CT for GRPR and integrin αVβ imaging in patients with breast cancer. Theranostics. 2018;8(4):1121–30.

  52. Zang J, Li D, Lang L, Zhu Z, Wang L, et al. 68Ga-NOTA-Aca-BBN(7-14)PET/CT in healthy volunteers and glioma patients. J Nucl Med. 2016;57(1):9–14.

  53. Lee HY, Li Z, Chen K, Hsu AR, Xu C, et al. PET/MRI dual-modality tumour imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49:1371–9.

  54. Park J-A, Kim JY, Lee YJ, Lee W, Lim SM, et al. Gadolinium complex of 125I/127I-RGD-DOTA conjugate as a tumour targeting SPECT/MR bimodal imaging probe. ACS Med Chem Lett. 2013;4:216–9.

    CAS  PubMed  Google Scholar 

  55. Li C, Wang W, Wu Q, Ke S, Houston J, et al. Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol. 2006;33:349–58.

    CAS  PubMed  Google Scholar 

  56. Chen Q, Wang H, Liu H, Wen S, Peng C, et al. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumours. Anal Chem. 2015;87:3949–56.

    CAS  PubMed  Google Scholar 

  57. Pandya DN, Hantgan R, Budzevich MM, Kock ND, Morse DL, et al. Preliminary therapy evaluation of 225Ac-DOTA-c(RGDyK) demonstrates that Cherenkov radiation derived from 225Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics. 2016;6:698–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogawa K, Takeda T, Mishiro K, Toyoshima A, Shiba K, et al. Radiotheranostics coupled between an At-211-labeled RGD peptide and the corresponding radioiodine-labeled RGD peptide. ACS Omega. 2019;4:4584–91.

    CAS  Google Scholar 

  59. Bozon-Petitprin A, Bacot S, Gauchez AS, Ahmandi M, Bourre JC, et al. Targeted radionuclide therapy with RAFT-RGD radiolabeld with 90Y or 177Lu in a mouse model of αVβ3 expressing tumours. Eur J Nucl Med Mol Imaging. 2015;42:252–63.

    CAS  PubMed  Google Scholar 

  60. Yang Y, Zhang L, Cai J, Li X, Cheng D, et al. Tumour angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl Mater Interfaces. 2016;8:1718–32.

    CAS  PubMed  Google Scholar 

  61. Wang J, Zhao H, Zhou Z, Zhou P, Yan Y, et al. MR/SPECT imaging guided photothermal therapy of tumour targeting Fe@Fe3O4 nanoparticles in vivo with low mononuclear phagocyte uptake. ACS Appl Mater Interfaces. 2015;8:19872–82.

    Google Scholar 

  62. Yu G, Yang Z, Fu X, Yung BC, Yang J, et al. Polyrotaxan-based supramolecular theranostics. Nat Commun. 2018;9:766.

    PubMed  PubMed Central  Google Scholar 

  63. Huang H, Dong Y, Zhang Y, Ru D, Shihua W, et al. GSH-sensitive Pt (IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics. 2018;9(4):1047–56.

    Google Scholar 

  64. Niebler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, et al. Exploring the role of RGD-recognizing integrins in cancer. Cancers. 2017;9(9):116.

    Google Scholar 

  65. Sinanan AC, Machell JR, Wynne-Hughes GT, Hunt NP, Lewis MP. Alpha v beta 3 and alpha v beta 5 integrins and their role in muscle precursor cell adhesion. Biol Cell. 2008;100(8):465–77.

    CAS  PubMed  Google Scholar 

  66. Antonov AS, Antonova GN, Munn DH, Mivechi N, Lucas R, Catravas JD, et al. αVβ3 Integrin regulates macrophage inflammatory response vis PI3 kinase/Akt-dependent NK-kB activation. J Cell Physciol. 2011;226(2):469–76.

    CAS  Google Scholar 

  67. Ward PA. Inflammation and αVβ3 integrin. Am J Respir Crit Care Med. 2012;185(1):5–6.

    PubMed  Google Scholar 

  68. Hsueh WA, Law RE, Yuns S. Integrins, adhesion and cardiac remodelling. Hypertenstion. 1998;31:176–80.

    CAS  Google Scholar 

  69. Prowse ABJ, Chong F, Gray PP, Munro TP. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011;6(1):1–12.

    CAS  PubMed  Google Scholar 

  70. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65:500–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wong FC, Kim EE. A review of molecular imaging studies reaching the clinical stage. Eur J Radiol. 2009;70:205–11.

    PubMed  Google Scholar 

  72. Glunde K, Pathak AP, Bhujwalla ZM. Molecular-functional imaging of cancer: to image and imagine. Trends Mol Med. 2007;13(7):287–97.

    CAS  PubMed  Google Scholar 

  73. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabeled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39:S126–38.

    PubMed  Google Scholar 

  74. Abouzied MM, Crawford ES, Nabi HA. 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol. 2005;33:145–55.

    PubMed  Google Scholar 

  75. Sun Y, Zeng Y, Zhu Y, Feng F, Xu W, et al. Application of 68Ga-PRGD2 PET/CT for αVβ3 integrin imaging of myocardial infarct and stroke. Theranostics. 2014;4:778–86.

    PubMed  PubMed Central  Google Scholar 

  76. Kim LT, Yamada KM. The regulation of expression of integrin receptors. Proc Soc Exp Biol Med. 1997;214:123–31.

    CAS  PubMed  Google Scholar 

  77. Venoit JP, Srivatsa S, Carlson P. β3 integrin – a prosmicous integrin involved in vascular pathology. Can J Cardiol. 1999;15:762–70.

    Google Scholar 

  78. Ikari Y, Yee KO, Schwart SM. Role of α5β1 and αVβ3 integrins on smooth muscle cell migration in fibrin gels. Thromb Haemost. 2000;84:701–5.

    CAS  PubMed  Google Scholar 

  79. Davenpeck KL, Marcinkiewiz C, Wang D, Niculescu R, Shi Y, et al. Regional differences in integrin expression: role of α5β1 in regulating smooth cell muscle functions. Circ Res. 2001;88:352–8.

    CAS  PubMed  Google Scholar 

  80. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res. 2001;52:372–86.

    CAS  PubMed  Google Scholar 

  81. Al-Fakhari N, Wilhelm J, Hahn M, Heidt M, Herlein FW, et al. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins α5β1 and αVβ3 in atherosclerosis. J Cell Biochem. 2003;89:808–23.

    Google Scholar 

  82. Lee SJ, Paeng JC. Nuclear molecular imaging for vulnerable atherosclerotic plaques. Korean J Radiol. 2015;16:955–66.

    PubMed  PubMed Central  Google Scholar 

  83. Haukkala J, Laitinen L, Luoto P, Ivenson P, Wilson I, et al. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice. Eur J Nucl Med Mol Imaging. 2009;36:2058–67.

    CAS  Google Scholar 

  84. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, et al. Evaluation of αVβ3-integrin targeted positron emission tomography tracer 18F-Galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2:331–8.

    PubMed  Google Scholar 

  85. Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, et al. Intergin-targeted imaging of inflammation in vascular remodeling. Atheroscler Tromb Vasc Biol. 2011;31:2820–6.

    CAS  Google Scholar 

  86. Paeng JC, Lee YS, Lee JS, Jeong JM, Kim KB, et al. Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging. Ann Nucl Med. 2013;27:847–54.

    CAS  PubMed  Google Scholar 

  87. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, et al. PET/CT imaging of integrin αVβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7:178–87.

    PubMed  Google Scholar 

  88. Golestani R, Mirfeizi L, Zeebregts CJ, Westra J, De Haas HJ, et al. Feasibility of [18F]-RGD for ex vivo imaging of atherosclerosis in detection of αVβ3-integrin expression. J Nucl Cardiol. 2015;6:1179–86.

    Google Scholar 

  89. Reyes E. A novel PET tracer for targeted imaging of atherosclerosis. J Nucl Cardiol. 2015;22:1191–4.

    PubMed  Google Scholar 

  90. Su H, Gorodny N, Gomez LF, Gangadharmath UB, Mu F, et al. Atherosclerotic plaque uptake of novel integrin tracer 18F-flotegatide in a mouse model of atherosclerosis. J Nucl Cardiol. 2014;21:531–62.

    Google Scholar 

  91. Makowski MR, Ebersberger U, Nekolla S, Schwaiger M. In vivo molecular imaging of angiogensis targeting αVβ3-integrin expression in a patient after acute myocardial infarction. Eur Heart J. 2008;29:2201.

    PubMed  Google Scholar 

  92. Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, et al. Molecular imaging of early αVβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med. 2012;53:318–23.

    CAS  PubMed  Google Scholar 

  93. Luo Y, Sun Y, Zhu ZL. Is the change of integrin αVβ3 expression in the infracted myocardium related to the clinical outcome? Clin Nucl Med. 2014;39:655–7.

    PubMed  Google Scholar 

  94. Golestani R, Jung JJ, Sadeghi MM. Molecular imaging of angiogensis and vascular remodeling in cardiovascular pathology. J Clin Med. 2016;5:57.

    PubMed Central  Google Scholar 

  95. Jenkins WS, Vesey AT, Stirrat C, Connell M, Lucatelli C, et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart. 2017;103:607–15.

    CAS  PubMed  Google Scholar 

  96. Gao H, Lang L, Guo N, Cao F, Quan Q, et al. PET imaging of angiogenesis after myocardial infarction/reperfusion using one-step labeled integrin-targeting tracer 18F-AIF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging. 2012;39:683–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Eo JS, Paeng JC, Lee S, Lee YS, Jeong JM. Angiogenesis imaging in myocardial infarction using 68Ga-NOTA-RGD PET: characterization and application to therapeutic efficacy monitoring in rats. Coron Artery Dis. 2013;24:303–11.

    PubMed  Google Scholar 

  98. Laitinen I, Dregely I, Rudelius M, Baumgartner C, Farrell E, et al. Characterization of inflammation and angiogenesis in atherosclerosis with simultaneous PET/MRI in a rabbit model. J Nucl Med. 2013;54(S2):407.

    Google Scholar 

  99. Menichetti L, Kusmic C, Panetta D, Arosio D, Petroni D, et al. Micro-PET/CT imaging of αVβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging. 2013;40:1265–74.

    CAS  PubMed  Google Scholar 

  100. Kuigel M, Dijkgraaf I, Kytö V, Helin S, Liljenbäck H, et al. Dimeric [68Ga]DOTA-RGD peptide targeting of αVβ3 integrin reveals extracellular matrix alterations after myocardial infarction. Mol Imaging Biol. 2014;16:793–801.

    Google Scholar 

  101. Paeng JC, Bregasi A, Sahul Z, Kalinowski L, Dobrucki L, et al. Serial reference tissue-based quantitative and volumetric analysis of integrin-targeted angiogenesis imaging: chronic canine model of myocardial infarction. J Nucl Med. 2014;55(S1):1710.

    Google Scholar 

  102. Kitagawa T, Kosuge H, Uchida M, Dua MM, Lida Y, et al. RGD-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Mol Imaging Biol. 2011;14:315–24.

    Google Scholar 

  103. Kitagawa T, Kosuge H, Uchida M, Lida Y, Dalman RL, et al. RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm. J Mag Reson Imaging. 2017;45:1144–53.

    Google Scholar 

  104. Van Den Borne SW, Isobe S, Verjans JW, Petrov A, Lovaung D, et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarct. J Am Col Cardiol. 2008;52:2017–28.

    Google Scholar 

  105. Wang H, Sun Y, Wu C, Zhu Z. 68Ga-BNOTA-PRGD2 PET/CT for evaluation of post-stroke angiogenesis: study protocol for a prospective open-label clinical trial. Asia Pacific J Clinc Trials: Nerv System Dis. 2016;1:43–9.

    Google Scholar 

  106. Grönman M, Tarkia M, Kiviniemi T, Halonen P, Kuivanen A, et al. Imaging of αVβ3 integrin expression in experimental myocardial ischemia with 68Ga-NODAGA-RGD positron emission tomography. J Transl Med. 2017;15:144.

    PubMed  PubMed Central  Google Scholar 

  107. Hua J, Dobrucki JW, Sadeghi MM, Zang J, Bourke BN, et al. Non-invasive imaging of angiogenesis with 99mTc-labeled peptide targeted at αVβ3 integrin after murine hindlimb ischemia. Circulation. 2005;111:3225–60.

    Google Scholar 

  108. Filardo G, Powell JT, Martinez MA, Ballard DJ. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane Database Syst Rev. 2015;3:CD001835.

    Google Scholar 

  109. Tegler G, Estrada S, Hall H, Wanhainen A, Björck M, et al. Autoradiography screening of potential positron emission tomography tracers for asymptomatic abdominal aortic aneurysms. Ups J Med Sci. 2014;119:229–35.

    PubMed  PubMed Central  Google Scholar 

  110. Stacy MR, Sinusas AJ. Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin. 2016;34:167–77.

    PubMed  Google Scholar 

  111. Alumatari A, Rossin R, Shokeen M, Hagooly A, Anath A, et al. Biodegradable dendritic positron-emitting nanoprobes for the invasive imaging of angiogenesis. Proc Natl Acad Sci U S A. 2009;106:685–90.

    Google Scholar 

  112. Xie F, Lof J, Everbach C, He A, Bennett RM, et al. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles. JACC Cardiovasc Imaging. 2009;2:511–8.

    PubMed  Google Scholar 

  113. Lobeek D, Bouwman FCM, Aarntzen EHJG, Molkenboer-Keunen JDM, Flucke UE, et al. A clinical feasibility study to image angiogenesis in patients with arteriovenous malformations using 68Ga-RGD PET.CT. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.119.231167.

  114. Kim YI, Phi JH, Paeng JC, Choi H, Kim SK, et al. In vivo evaluation of angiogenic activity and its correlation with efficacy of indirect revascularization surgery in paediatric moyamoya disease. J Nucl Med. 2014;55:1467–72.

    CAS  PubMed  Google Scholar 

  115. Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol. 2008;7:1056–66.

    PubMed  Google Scholar 

  116. Ocak M, Demirci E, Day K, Latoche J, Liu J, et al. Evaluation of 64Cu and 68Ga-NODAGA-c(RGDyK) in a rodent inflammatory paw model. J Nucl Med. 2014;55(S1):1222.

    Google Scholar 

  117. Cao Q, Cai W, Li ZB, Chen K, He L, et al. PET imaging of acute and chronic inflammation in living mice. Eur J Nucl Med Mol Imaging. 2007;34:1832–42.

    PubMed  Google Scholar 

  118. Pichler BJ, Kneilling M, Haubner R, Bramüller H, Schwaiger M, et al. Imaging of delayed-type hypersensitivity reaction by PET and 18F-Galacto-RGD. J Nucl Med. 2005;46:184–9.

    PubMed  Google Scholar 

  119. Shu S, Zhang L, Zhu YC, Li F, Cui LY, et al. Imaging angiogenesis using 68Ga-NOTA-PRGD2 positron emission tomography/computed tomography in patients with severe intracranial atherosclerotic disease. J Cereb Blood Flow Metab. 2017;37:3401–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zheleznyak A, Wadas TJ, Sherman CD, Wilson JM, Kostenuik PJ, et al. Integrin αVβ3 as a PET imaging biomarker for osteoclast number in mouse models of negative and positive osteoclast regulation. Mol Imaging Biol. 2012;14:500–8.

    PubMed  PubMed Central  Google Scholar 

  121. Wilder RL. Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic disease. Ann Rheum Dis. 2002;61(S2):ii96–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Notni J, Gassert FT, Steiger K, Sommer P, Wichert W, et al. In vivo imaging of early stages of rheumatoid arthritis by α5β1-integrin-targeted positron emission tomography. EJNNMI Res. 2019;9:87.

    CAS  Google Scholar 

  123. Bhatnagar S, Khera E, Liao J, Eniola V, Hu Y, et al. Oral and subcutaneous administration of a near-infrared fluorescent molecular imaging agent detects inflammation in a mouse model of rheumatoid arthritis. Sci Rep. 2019;9:4661.

    PubMed  PubMed Central  Google Scholar 

  124. Chen DL, Schieldbler ML, Goo JM, Van Beek EJR. PET imaging approaches for inflammatory lung diseases: current concepts and future directions. Eur J Radiol. 2017;86:371–6.

    PubMed  Google Scholar 

  125. Mirsadree S, Marin A, Jenkins W, Connell T, Tavares A, et al. The identification of systemic integrin activation in idiopathic and systemic sclerosis pulmonary fibrosis using 18F-fluciclatide positron emission tomography. Insights Imag. 2016;7:S424.

    Google Scholar 

  126. Schniering J, Benesova M, Brunner M, Haller S, Chors S, et al. Visualisation of interstitial lung disease by molecular imaging of integrin αvβ3 and somatostatin receptor 2. Ann Rheum Dis. 2019;78(2):218–27.

    CAS  PubMed  Google Scholar 

  127. Shao T, Josephson L, Liang SH. PET/SPECT molecular probes for the diagnosis and staging of non-alcoholic fatty liver disease. Mol Imaging. 2019;18:1–11.

    Google Scholar 

  128. Pozzi A, Zent R. Integrins in kidney disease. J Am Soc Neph. 2013;24:1034–9.

    CAS  Google Scholar 

  129. Du Y, An S, Liu L, Li L, Zhou XJ, et al. Serial non-invasive monitoring of renal disease following immune-mediated injury using near-infrared optical imaging. PLoS One. 2012;7:e43931.

    Google Scholar 

  130. Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;73:1550–61.

    Google Scholar 

  131. Deininger F, Leonhard F, Fani M, Dumont R, Toennesmann R, et al. PET imaging of inflammatory processes during GvHD. J Nucl Med. 2011;52(S1):518.

    Google Scholar 

  132. Mozid AM, Holstensson M, Choudhury T, Ben-Haim S, Allie R, et al. Clinical feasibility study to detect angiogenesis following bone marrow stem cell transplantation in chronic ischaemic heart failure. Nucl Med Commun. 2014;35:839–48.

    PubMed  Google Scholar 

  133. Nguyen PK, Lan F, Wang Y, Wu JC. Imaging guiding the clinical translation of cardiac stem cell therapy. Circ Res. 2011;109:962–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Evens P, McParland B, Zubeldia J. Application of 99mTc peptide-based compound as bone marrow imaging agent. https://patents.google.com/patent/US20110256055A1/en. US20110256055A1.

  135. Nam YS, Ricles LM, Suggs LJ, Emalianov SY. Imaging strategies for tissue engineering applications. Tissue Eng B. 2015;21:88–102.

    Google Scholar 

  136. Shachar M, Tsur-gang O, Dvir T, Leor J, Cohen S. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater. 2011;7:152–62.

    CAS  PubMed  Google Scholar 

  137. Zheng W, Wang Z, Song L, Zhao Q, Zhang J, et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials. 2012;33:2280–91.

    Google Scholar 

  138. Hennessy KM, Clem WC, Phillips MC, Sawyer AA, Shaikh FM, et al. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials. 2008;29:3075–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wholrab S, Müller S, Schmidt A, Neubauer S, Kessler H, et al. Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials. 2012;33:6650–9.

    Google Scholar 

  140. Patra C, Ricciardia F, Engel FB. The functional properties of nephronectin: an adhesion molecule for cardiac tissue engineering. Biomaterials. 2012;33:4327–35.

    CAS  PubMed  Google Scholar 

  141. Chin CW, Vassiliou V, Jenkins WS, Prasad SK, Newby DE, et al. Markers of left ventricular decompensation in aortic stenosis. Expert Rev Cardiovasc Ther. 2014;12:901–12.

    CAS  PubMed  Google Scholar 

  142. Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: a sticky business. Exp Cell Res. 2006;312:651–8.

    CAS  PubMed  Google Scholar 

  143. Lygoe KA, Norman JT, Marshall JF, Lewis MP. Alpha V integrins play an important role in myofibroblast differentiation. Wound Repair Regen. 2004;12:461–70.

    PubMed  Google Scholar 

  144. Su G, Atakilit A, Li JT, Wu N, Bhattacharya M, et al. Absence of ingetrin αVβ3 enhances vascular leak in mice by inhibiting endothelial cortical actin formation. Am J Respir Crit Care Med. 2012;185:58–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Danese S, Sans M, De la Motte C, Graziani C, West G, et al. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterol. 2006;130:2060–73.

    CAS  Google Scholar 

  146. Aziz MM, Ishihara S, Mishima Y, Oshima N, Moriyama I, et al. MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependents alpha V beta 3 integrin signaling. J Immunol. 2009;182:7222–32.

    CAS  PubMed  Google Scholar 

  147. Roivainen A, Jalkanen S, Nanni C. Gallium-labelled peptides for imaging of inflammation. Eur J Nucl Med Mol Imaging. 2012;39:S68–77.

    PubMed  Google Scholar 

  148. Zhao H, Kitaura H, Sands MS, Ross FP, Teitelbaum SL, et al. Critical role of β3 integrin in experimental postmenopausal osteoporosis. J Bone Miner Res. 2005;20:2116–23.

    CAS  PubMed  Google Scholar 

  149. Murphy MG, Cerchio K, Stoch SA, Gottesdiener K, Wu M, et al. Effect of L-000845704, an alphaVbeta3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab. 2005;90:2022–8.

    CAS  PubMed  Google Scholar 

  150. Lin TH, Yang RS, Tu HJ, Liou HC, et al. Inhibition of osteoporosis by the αVβ3 integrin antagonist of rhodostomin variants. Eur J Pharmacol. 2017;804:94–101.

    CAS  PubMed  Google Scholar 

  151. Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg. 2016;6:680–98.

    PubMed  PubMed Central  Google Scholar 

  152. Roth T, Podestá F, Stepp MA, Boeri D, Lorenzi M. Integrin overexpression induced by high glucose and by human diabetes: potential pathway of cell dysfunction in diabetic microangiopathy. Proc Natl Acad Sci U S A. 1993;90:9640–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Regoli M, Bendayan M. Alterations in the expression of the α3β1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia. 1997;40:15–22.

    CAS  PubMed  Google Scholar 

  154. Metha NN, Yu Y, Saboury B, Foroughi N, Krishnamoorthy P, et al. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose postiron emission tomography-computed tomography (FDG PET/CT): a pilot study. Arch Dermatol. 2011;147:1031–9.

    Google Scholar 

  155. Takata T, Taniguchi Y, Ohnishi T, Kohsaki S, Nogami M, et al. 18FDG PET/CT is a powerful tool for detecting subclinical arthritis in patients with psoriatic arthritis and/or psoriasis vulgaris. J Dermatol Sci. 2011;64:144–7.

    CAS  PubMed  Google Scholar 

  156. Bains S, Reimert M, Win AZ, Khan S, Aparici CM. A patient with psoriatic arthritis imaged with FDG-PET/CT demonstrated an unusual imaging pattern with muscle and facia involvement: a case report. Nucl Med Mol Imaging. 2012;46:138–43.

    PubMed  PubMed Central  Google Scholar 

  157. Jókai H, Szakonyi J, Kontár O, Marschalkó M, Szalai K, et al. Impact of the effective tumor necrosis factor alpha inhibitor treatment on the arterial intimia media thickness in psoriasis: results of a pilot study. J Am Acad Dermatol. 2013;69:523–39.

    PubMed  Google Scholar 

  158. Naik HB, Natarajan B, Stansky E, Ahlman MA, Teague H, et al. Severity of psoriasis associates with aortic vascular inflammation detected by FDG PET/CT and neutrophil activation in a prospective observational study. Atheroscler Thromb Vasc Biol. 2015;35:2667–76.

    CAS  Google Scholar 

  159. Creamer D, Allen M, Sousa A, Poston R, Barker J. Altered vascular endothelium integrin expression in psoriasis. Am J Pathol. 1995;147:1661–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Garrigues HJ, Rubinchikova YE, DiPersio CM, Rose TM. Integrin αVβ3 binds to the RGD motif of glycoprotein B of Kaposi’s sarcoma-associated herpes virus and functions as a RGD-dependent entry receptor. J Virol. 2008;82:1570–80.

    CAS  PubMed  Google Scholar 

  161. O’Donell V, Pacheco JM, Gregg D, Baxt B. Analysis of foot-and-mouth disease virus integrin receptor expression in tissues from naïve and infected cattle. J Comp Pathol. 2009;141:98–112.

    Google Scholar 

  162. Antonova LV, Silnikov VN, Sevostyanova VV, Yuzhalin AE, Koroleva LS, Velikanova EA, et al. Biocompatibility of small-diameter vascular grafts in different modes of RGD modification. Polymers. 2020;11(1):174. https://doi.org/10.3390/polym11010174.

    Article  CAS  Google Scholar 

  163. Alipour M, Baneshi M, Hosseinkhani S, Mahmoudi R, Arabzadeh AJ, Akrami M, et al. Recent progress in biomedical applications of RGD-based ligand: from precise cancer theranostics to biomaterial engineering: a systematic review. J Biomed Mater Res A. 2020:108(4). https://doi.org/10.1002/jbm.a36862.

  164. Tahlawi A, Klontzas ME, Allenby MC, Morais JCF, Panoskaltisis N, Mantalaris A. RGD-functionalised polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation. J Tissue Eng Regen Med. 2018:13(2). https://doi.org/10.1002/term.2784.

  165. Liu Y, Ma LT, Zhou H, Qianqian Y, Chen X, et al. Polypeptide nano-se targeting inflammation and theranostic rheumatoid arthritis by anti-angiogenic and NO activating AMPKα signaling pathway. J Mater Chem B. 2018;6:3497–514.

    CAS  PubMed  Google Scholar 

  166. Tang M, Ji X, Xu H, Zhang L, Jiang A, et al. Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal Chem. 2018;90:8188–95.

    CAS  PubMed  Google Scholar 

  167. Horton MA. The αVβ3 integrin “vironectin receptor”. Int J Biochem Cell Biol. 1997;29:721–5.

    CAS  PubMed  Google Scholar 

  168. Wang Y, Liu Z, Li T, Chen L, Lyu J, et al. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methrotrexate and nimesulide on rheumatoid arthritis. Theranostics. 2018;9(3):708–20.

    Google Scholar 

  169. Knapp FF, Dash A. Translation of radiopharmaceuticals from bench to bedside: regulatory and manufacturing issues. Radiopharmaceuticals for therapy – Chapter 17: 323–343. Springer. https://doi.org/10.1007/978-81-322-2607-9_17.

  170. Peitl PK, Rangger C, Garnuszek P, Mikolajczak R, Hubalewska-Dydejcsyk A, Maina T, et al. Clinical translation of theranostic radiopharmaceuticals: current regulatory status and recent examples. J Labelled Comp Radiopharm. 2019;62(10):673–83. https://doi.org/10.1002/jlcr.3712.

    Article  CAS  Google Scholar 

  171. Resichl G. Special issue “targets, tracers and translation novel radiopharmaceuticals boost nuclear medicine”. Pharmaceuticals. 2019;12:111. https://doi.org/10.3390/ph12030111.

    Article  CAS  Google Scholar 

  172. Allot L, Oboagye EO. Chemistry considerations for the clinical translation of oncology PET radiopharmaceuticals. Molecular Pharmaceuticals. 2020. (In press): https://doi.org/10.1021/acs.molpharmaceut.0c00328.

Download references

Acknowledgments

The graphic abstract for this article was provided by the scientific illustrator Cristina Sala Ripoll (www.cristinasalaripoll.com). Language editing was kindly provided by Hester Oosthuizen (hester.oos@mweb.co.za), and advanced language editing and scientific editing was provided by Bioeditman (http://bioeditman.org/contact-5/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ebenhan.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Related manuscripts

The authors declare that no related manuscripts are under consideration for publication elsewhere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: There was a mistake in the original article. The references cited in Table 1 to Table 4 are incorrect. The correct set of references per table appears below. Table 1 must rather refer to references 17 (first entry) to 27 (last entry) NOT 8 (first) to 18 (last) Table 2 must rather refer to references 28 (first entry) to 61 (last entry) NOT 19 (first) to 52 (last) Table 3 must rather refer to references 62 (first entry) to 65 (last entry) NOT 53 (first) to 56 (last) Table 4 must rather refer to references 66 (first entry) to 72 (last entry) NOT 57 (first) to 63 (last) The original article has been corrected.

This article is part of the Topical Collection on Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebenhan, T., Kleynhans, J., Zeevaart, J.R. et al. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 48, 1414–1433 (2021). https://doi.org/10.1007/s00259-020-04975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04975-9

Keywords

Navigation