Skip to main content


Log in

Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF)

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript



Recently, a new disease phenotype characterized by supra-normal left ventricular ejection fraction (snLVEF) has been suggested, based on large datasets demonstrating an increased all-cause mortality in individuals with an LVEF > 65%. The underlying mechanisms of this association are currently unknown.


A total of 1367 patients (352 women, mean age 63.1 ± 11.6 years) underwent clinically indicated rest/adenosine stress ECG-gated 13N-ammonia positron emission tomography (PET) between 1995 and 2017 at our institution. All patients were categorized according to LVEF. A subcohort of 698 patients (150 women) were followed for major adverse cardiac events (MACEs), a composite of cardiac death, non-fatal myocardial infarction, cardiac-related hospitalization, and revascularization.


The prevalence of a snLVEF (≥ 65%) was higher in women as compared to that in men (31.3% vs 18.8%, p < 0.001). In women, a significant reduction in coronary flow reserve (CFR, p < 0.001 vs normal LVEF) and a blunted heart rate reserve (% HRR, p = 0.004 vs normal LVEF) during pharmacological stress testing—a surrogate marker for autonomic dysregulation—were associated with snLVEF. Accordingly, reduced CFR and HRR were identified as strong and independent predictors for snLVEF in women in a fully adjusted multinomial regression analysis. After a median follow-up time of 5.6 years, women with snLVEF experienced more often a MACE than women with normal (55–65%) LVEF (log rank p < 0.001), while such correlation was absent in men (log rank p = 0.76).


snLVEF is associated with an increased risk of MACE in women, but not in men. Microvascular dysfunction and an increased sympathetic tone in women may account for this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The dataset generated and analyzed during this study is available from the corresponding author on reasonable request.


  1. Wehner GJ, Jing L, Haggerty CM, Suever JD, Leader JB, Hartzel DN, et al. Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? Eur Heart J. 2019.

  2. Ng ACT, Bax JJ. Hyperdynamic left ventricular function and the prognostic implications for heart failure with preserved ejection fraction. Eur Heart J. 2019.

  3. Koch SE, Haworth KJ, Robbins N, Smith MA, Lather N, Anjak A, et al. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging: a retrospective study. Ultrasound Med Biol. 2013;39(11):2034–43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gebhard C, Stahli BE, Gebhard CE, Tasnady H, Zihler D, Wischnewsky MB, et al. Age- and gender-dependent left ventricular remodeling. Echocardiography. 2013;30(10):1143–50.

    Article  PubMed  Google Scholar 

  5. Gebhard C, Buechel RR, Stahli BE, Gransar H, Achenbach S, Berman DS, et al. Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: results from the prospective multicentre CONFIRM study. Eur Heart J Cardiovasc Imaging. 2017;18(9):990–1000.

    Article  PubMed  Google Scholar 

  6. Gebhard C, Stahli BE, Gebhard CE, Fiechter M, Fuchs TA, Stehli J, et al. Gender- and age-related differences in rest and post-stress left ventricular cardiac function determined by gated SPECT. Int J Cardiovasc Imaging. 2014;30(6):1191–9.

    Article  PubMed  Google Scholar 

  7. Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, et al. Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume: the Dallas Heart Study. Circulation. 2006;113(12):1597–604.

    Article  PubMed  Google Scholar 

  8. Gebhard C, Maredziak M, Messerli M, Buechel RR, Lin F, Gransar H, et al. Increased long-term mortality in women with high left ventricular ejection fraction: data from the CONFIRM (COronary CTAngiography EvaluatioN For Clinical Outcomes: an InteRnational Multicenter) Long-Term Registry. Eur Heart J Cardiovasc Imaging. 2019; 2020;21(4):363–374.

  9. Saab FA, Steg PG, Avezum A, Lopez-Sendon J, Anderson FA, Huang W, et al. Can an elderly woman’s heart be too strong? Increased mortality with high versus normal ejection fraction after an acute coronary syndrome. The Global Registry of Acute Coronary Events. Am Heart J. 2010;160(5):849–54.

    Article  PubMed  Google Scholar 

  10. Montorsi P, Fabbiocchi F, Loaldi A, Annoni L, Polese A, De Cesare N, et al. Coronary adrenergic hyperreactivity in patients with syndrome X and abnormal electrocardiogram at rest. Am J Cardiol. 1991;68(17):1698–703.

    Article  CAS  PubMed  Google Scholar 

  11. Burger IA, Lohmann C, Messerli M, Bengs S, Becker A, Maredziak M, et al. Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging. PLoS One. 2018;13(8):e0202302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hogarth AJ, Graham LN, Mary DA, Greenwood JP. Gender differences in sympathetic neural activation following uncomplicated acute myocardial infarction. Eur Heart J. 2009;30(14):1764–70.

    Article  PubMed  Google Scholar 

  13. Mitoff PR, Gam D, Ivanov J, Al-hesayen A, Azevedo ER, Newton GE, et al. Cardiac-specific sympathetic activation in men and women with and without heart failure. Heart. 2011;97(5):382–7.

    Article  PubMed  Google Scholar 

  14. Fiechter M, Gebhard C, Ghadri JR, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Myocardial perfusion imaging with 13N-ammonia PET is a strong predictor for outcome. Int J Cardiol. 2013;167(3):1023–6.

    Article  PubMed  Google Scholar 

  15. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6.

    Article  PubMed  Google Scholar 

  16. Gebhard C, Fiechter M, Herzog BA, Lohmann C, Bengs S, Treyer V, et al. Sex differences in the long-term prognostic value of (13)N-ammonia myocardial perfusion positron emission tomography. Eur J Nucl Med Mol Imaging. 2018.

  17. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation. 2009;119(22):e561–87.

    Article  PubMed  Google Scholar 

  18. Khorsand A, Graf S, Eidherr H, Wadsak W, Kletter K, Sochor H, et al. Gated cardiac 13N-NH3 PET for assessment of left ventricular volumes, mass, and ejection fraction: comparison with electrocardiography-gated 18F-FDG PET. J Nucl Med. 2005;46(12):2009–13.

    CAS  PubMed  Google Scholar 

  19. Okazawa H, Takahashi M, Hata T, Sugimoto K, Kishibe Y, Tsuji T. Quantitative evaluation of myocardial blood flow and ejection fraction with a single dose of (13)NH(3) and gated PET. J Nucl Med. 2002;43(8):999–1005.

    PubMed  Google Scholar 

  20. Slomka PJ, Alexanderson E, Jácome R, Jiménez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53(2):171–81.

    Article  CAS  PubMed  Google Scholar 

  21. DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallée JP, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol. 1996;3(6 Pt 1):494–507.

    Article  CAS  PubMed  Google Scholar 

  22. Choi Y, Huang SC, Hawkins RA, Kim JY, Kim BT, Hoh CK, et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med. 1999;40(6):1045–55.

    CAS  PubMed  Google Scholar 

  23. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kanayama S, Matsunari I, Hirayama A, Kitayama M, Matsudaira M, Yoneyama T, et al. Assessment of global and regional left ventricular function by electrocardiographic gated N-13 ammonia positron emission tomography in patients with coronary artery disease. Circ J. 2005;69(2):177–82.

    Article  PubMed  Google Scholar 

  25. Paonessa JR, Brennan T, Pimentel M, Steinhaus D, Feng M, Celi LA. Hyperdynamic left ventricular ejection fraction in the intensive care unit. Crit Care (London, England). 2015;19:288.

    Article  Google Scholar 

  26. Bahrami H, McConnell M, Heidenreich P. High left ventricular ejection fraction is associated with worse outcomes in patients with and without heart failure. J Am Coll Cardiol. 2014;63(12 Supplement):A732.

    Article  Google Scholar 

  27. Bravo PE, Di Carli MF, Dorbala S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev. 2017;22(4):455–64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000;97(16):9226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. 2013;5(1):35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990;67(4):871–85.

    Article  CAS  PubMed  Google Scholar 

  31. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26(4):1068–79.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang XP, Vatner SF, Shen YT, Rossi F, Tian Y, Peppas A, et al. Increased apoptosis and myocyte enlargement with decreased cardiac mass; distinctive features of the aging male, but not female, monkey heart. J Mol Cell Cardiol. 2007;43(4):487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Howlett SE. Age-associated changes in excitation-contraction coupling are more prominent in ventricular myocytes from male rats than in myocytes from female rats. Am J Physiol Heart Circ Physiol. 2010;298(2):H659–70.

    Article  CAS  PubMed  Google Scholar 

  34. Liao Y, Cooper RS, Mensah GA, McGee DL. Left ventricular hypertrophy has a greater impact on survival in women than in men. Circulation. 1995;92(4):805–10.

    Article  CAS  PubMed  Google Scholar 

  35. Liu CC, Kuo TB, Yang CC. Effects of estrogen on gender-related autonomic differences in humans. Am J Physiol Heart Circ Physiol. 2003;285(5):H2188–93.

    Article  CAS  PubMed  Google Scholar 

  36. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–38.

    Article  CAS  PubMed  Google Scholar 

  37. Bravo PE, Hage FG, Woodham RM, Heo J, Iskandrian AE. Heart rate response to adenosine in patients with diabetes mellitus and normal myocardial perfusion imaging. Am J Cardiol. 2008;102(8):1103–6.

    Article  CAS  PubMed  Google Scholar 

  38. Conradson TB, Clarke B, Dixon CM, Dalton RN, Barnes PJ. Effects of adenosine on autonomic control of heart rate in man. Acta Physiol Scand. 1987;131(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  39. Hage FG, Heo J, Franks B, Belardinelli L, Blackburn B, Wang W, et al. Differences in heart rate response to adenosine and regadenoson in patients with and without diabetes mellitus. Am Heart J. 2009;157(4):771–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hage FG, Perry G, Heo J, Iskandrian AE. Blunting of the heart rate response to adenosine and regadenoson in relation to hyperglycemia and the metabolic syndrome. Am J Cardiol. 2010;105(6):839–43.

    Article  CAS  PubMed  Google Scholar 

  41. Abidov A, Hachamovitch R, Hayes SW, Ng CK, Cohen I, Friedman JD, et al. Prognostic impact of hemodynamic response to adenosine in patients older than age 55 years undergoing vasodilator stress myocardial perfusion study. Circulation. 2003;107(23):2894–9.

    Article  PubMed  Google Scholar 

  42. Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE. A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2011;18(6):1086–94.

    Article  PubMed  Google Scholar 

  43. Gebhard CE, Maredziak M, Portmann A, Bengs S, Haider A, Fiechter M, et al. Heart rate reserve is a long-term risk predictor in women undergoing myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2019.

  44. Kaski JC. Cardiac syndrome X in women: the role of oestrogen deficiency. Heart. 2006;92(Suppl 3):iii5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gulli G, Cemin R, Pancera P, Menegatti G, Vassanelli C, Cevese A. Evidence of parasympathetic impairment in some patients with cardiac syndrome X. Cardiovasc Res. 2001;52(2):208–16.

    Article  CAS  PubMed  Google Scholar 

  46. Crea F, Bairey Merz CN, Beltrame JF, Kaski JC, Ogawa H, Ong P, et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J. 2017;38(7):473–7.

    Article  CAS  PubMed  Google Scholar 

  47. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol. 1999;33(7):1948–55.

    Article  CAS  PubMed  Google Scholar 

  48. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20.

    Article  CAS  PubMed  Google Scholar 

Download references


CG was supported by grants from the Swiss National Science Foundation (SNSF); the Olga Mayenfisch Foundation, Switzerland; the OPO Foundation, Switzerland; the Novartis Foundation, Switzerland; the Swiss Heart Foundation; the Helmut Horten Foundation, Switzerland; the EMDO Foundation, Switzerland; the Iten-Kohaut Foundation, Switzerland; and the University Hospital Zurich Foundation. SB was supported by the University of Zurich (UZH) Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Catherine Gebhard.

Ethics declarations

Conflict of interest

All authors have the following to disclose: the University Hospital of Zurich holds a research contract with GE Healthcare. CG has received research grants from the Novartis Foundation, Switzerland.

Ethical approval

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The study was approved by the local ethics committee (BASEC No. 2017–01112). The need for informed written consent was waived by the ethics committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maredziak, M., Bengs, S., Portmann, A. et al. Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF). Eur J Nucl Med Mol Imaging 47, 3094–3106 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: