Skip to main content

Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer

Abstract

Purpose

We evaluated the potential usefulness of [68Ga]Ga-DOTA-FAPI-04 positron emission tomography/computed tomography (PET/CT) for the diagnosis of primary and metastatic lesions in various types of cancer, compared with [18F] FDG PET/CT.

Methods

A total of 75 patients with various types of cancer underwent contemporaneous [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT either for an initial assessment or for recurrence detection. Tumour uptake was quantified by the maximum standard uptake value (SUVmax). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of [18F] FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT were calculated and compared to evaluate the diagnostic efficacy.

Results

The study cohort consisted of 75 patients (47 males and 28 females; median age, 61.5 years; age range, 32–85 years). Fifty-four patients with 12 different tumour entities underwent paired [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for initial assessment, while the other 21 patients underwent paired scans for recurrence detection. [68Ga]Ga-DOTA-FAPI-04 PET/CT was able to clearly identify 12 types of malignant tumours with favourable tumour-to-background contrast, which resulted in a higher detection rate of primary tumours than did [18F] FDG PET/CT (98.2% vs. 82.1%, P = 0.021). Meanwhile, [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a better sensitivity than [18F] FDG PET/CT in the detection of lymph nodes (86.4% vs. 45.5%, P = 0.004) and bone and visceral metastases (83.8% vs. 59.5%, P = 0.004).

Conclusion

[68Ga]Ga-DOTA-FAPI-04 PET/CT showed a superior diagnostic efficacy than [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer, especially in identifying liver metastases, peritoneal carcinomatosis, and brain tumours.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;1990(87):7235–9.

    Article  Google Scholar 

  2. 2.

    Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl. 2014;8(5–6):454–63. https://doi.org/10.1002/prca.201300095.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Siveke JT. Fibroblast-activating protein: targeting the roots of the tumor microenvironment. J Nucl Med. 2018;59(9):1412–4. https://doi.org/10.2967/jnumed.118.214361.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Cohen SJ, Alpaugh RK, Palazzo I, Meropol NJ, Rogatko A, Xu Z, et al. Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas. 2008;37(2):154–8. https://doi.org/10.1097/MPA.0b013e31816618ce.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zhang Y, Tang H, Cai J, Zhang T, Guo J, Feng D, et al. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 2011;303(1):47–55. https://doi.org/10.1016/j.canlet.2011.01.011.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ju M-J, Qiu S-J, Fan J, Xiao Y-S, Gao Q, Zhou J, et al. Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol. 2009;131(4):498–510.

    CAS  Article  Google Scholar 

  7. 7.

    Wikberg ML, Edin S, Lundberg IV, Biology BVGJT. High intratumoral expression of fibroblast activation protein (FAP) in colon cancer is associated with poorer patient prognosis. Tumor Biol. 2013;34(2):1013–20.

    CAS  Article  Google Scholar 

  8. 8.

    Rettig WJ, Su SL, Fortunato SR, Scanlan MJ, Raj BKM, Garin-Chesa P, et al. Fibroblast activation protein: purification, epitope mapping and induction by growth factors. Int J Cancer. 1994;58(3):385–92.

    CAS  Article  Google Scholar 

  9. 9.

    Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jager D, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med. 2018;59(9):1423–9. https://doi.org/10.2967/jnumed.118.210435.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59(9):1415–22. https://doi.org/10.2967/jnumed.118.210443.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W, et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med. 2019;60(3):386–92. https://doi.org/10.2967/jnumed.118.215913.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5. https://doi.org/10.2967/jnumed.119.227967.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Luo Y, Pan Q, Zhang W. IgG4-related disease revealed by (68)Ga-FAPI and (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(12):2625–6. https://doi.org/10.1007/s00259-019-04478-2.

    Article  PubMed  Google Scholar 

  14. 14.

    Pan Q, Luo Y, Zhang W. Recurrent immunoglobulin G4-related disease shown on 18F-FDG and 68Ga-FAPI PET/CT. Clin Nucl Med. 2020. https://doi.org/10.1097/RLU.0000000000002919.

  15. 15.

    Spadafora M, Pace L, Evangelista L, Mansi L, Del Prete F, Saladini G, et al. Risk-related (18)F-FDG PET/CT and new diagnostic strategies in patients with solitary pulmonary nodule: the ITALIAN multicenter trial. Eur J Nucl Med Mol Imaging. 2018;45(11):1908–14. https://doi.org/10.1007/s00259-018-4043-y.

    Article  PubMed  Google Scholar 

  16. 16.

    Redondo-Cerezo E, Martinez-Cara JG, Jimenez-Rosales R, Valverde-Lopez F, Caballero-Mateos A, Jervez-Puente P, et al. Endoscopic ultrasound in gastric cancer staging before and after neoadjuvant chemotherapy. A comparison with PET-CT in a clinical series. United European Gastroenterol J. 2017;5(5):641–7. https://doi.org/10.1177/2050640616684697.

    Article  PubMed  Google Scholar 

  17. 17.

    Jiang C, Chen Y, Zhu Y, Xu Y. Systematic review and meta-analysis of the accuracy of 18F-FDG PET/CT for detection of regional lymph node metastasis in esophageal squamous cell carcinoma. J Thoracic Dis. 2018;10(11):6066–76.

    Article  Google Scholar 

  18. 18.

    Jadvar H. Is there use for FDG-PET in prostate cancer? Semin Nucl Med. 2016;46(6):502–6. https://doi.org/10.1053/j.semnuclmed.2016.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Findlay JM, Antonowicz S, Segaran A, El Kafsi J, Zhang A, Bradley KM, et al. Routinely staging gastric cancer with (18)F-FDG PET-CT detects additional metastases and predicts early recurrence and death after surgery. Eur Radiol. 2019;29(5):2490–8. https://doi.org/10.1007/s00330-018-5904-2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sivesgaard K, Larsen LP, Sorensen M, Kramer S, Schlander S, Amanavicius N, et al. Diagnostic accuracy of CE-CT, MRI and FDG PET/CT for detecting colorectal cancer liver metastases in patients considered eligible for hepatic resection and/or local ablation. Eur Radiol. 2018;28(11):4735–47. https://doi.org/10.1007/s00330-018-5469-0.

    Article  PubMed  Google Scholar 

  21. 21.

    Coccolini F, Gheza F, Lotti M, Virzi S, Iusco D, Ghermandi C, et al. Peritoneal carcinomatosis. World J Gastroenterol. 2013;19(41):6979–94. https://doi.org/10.3748/wjg.v19.i41.6979.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shimada H, Okazumi S, Koyama M, Murakami K. Japanese Gastric Cancer Association Task Force for Research Promotion: clinical utility of 18F-fluoro-2-deoxyglucose positron emission tomography in gastric cancer. A systematic review of the literature. Gastric Cancer. 2011;14(1):13–21. https://doi.org/10.1007/s10120-011-0017-5.

    Article  PubMed  Google Scholar 

  23. 23.

    Rubini G, Altini C, Notaristefano A, Merenda N, Rubini D, Ianora AA, et al. Role of 18F-FDG PET/CT in diagnosing peritoneal carcinomatosis in the restaging of patient with ovarian cancer as compared to contrast enhanced CT and tumor marker Ca-125. Rev Esp Med Nucl Imagen Mol. 2014;33(1):22–7. https://doi.org/10.1016/j.remn.2013.06.008.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem. 2019;4(1):16. https://doi.org/10.1186/s41181-019-0069-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rohrich M, Loktev A, Wefers AK, Altmann A, Paech D, Adeberg S, et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(12):2569–80. https://doi.org/10.1007/s00259-019-04444-y.

    Article  PubMed  Google Scholar 

  26. 26.

    Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35. https://doi.org/10.1007/s00259-012-2295-5.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46(6):945–52.

    CAS  PubMed  Google Scholar 

  28. 28.

    Afshar-Oromieh A, Hetzheim H, Kubler W, Kratochwil C, Giesel FL, Hope TA, et al. Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur J Nucl Med Mol Imaging. 2016;43(9):1611–20. https://doi.org/10.1007/s00259-016-3419-0.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med. 2013;54(10):1755–9. https://doi.org/10.2967/jnumed.113.120600.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Meyer C, Dahlbom M, Lindner T, Vauclin S, Mona C, Slavik R, et al. Radiation dosimetry and biodistribution of (68)Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.119.236786.

Download references

Availability of data and material

Not applicable.

Funding

This work was funded by National Natural Science Foundation of China (Grant number 81772893 and 81701736) and the key medical and health projects in Xiamen (Grant number 3502Z20191104).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Long Sun, Qin Lin or Hua Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any experiments with animals.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - General

Electronic supplementary material

ESM 1

(DOCX 3907 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Pang, Y., Wu, J. et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging 47, 1820–1832 (2020). https://doi.org/10.1007/s00259-020-04769-z

Download citation

Keywords

  • [68Ga]Ga-DOTA-FAPI-04
  • [18F]FDG
  • PET/CT
  • Lymph node metastasis
  • Bone and visceral metastases