EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy

Abstract

Introduction

Scintigraphic evaluation of the thyroid gland enables determination of the iodine-123 iodide or the 99mTc-pertechnetate uptake and distribution and remains the most accurate method for the diagnosis and quantification of thyroid autonomy and the detection of ectopic thyroid tissue. In addition, thyroid scintigraphy and radioiodine uptake test are useful to discriminate hyperthyroidism from destructive thyrotoxicosis and iodine-induced hyperthyroidism, respectively.

Methods

Several radiopharmaceuticals are available to help in differentiating benign from malignant cytologically indeterminate thyroid nodules and for supporting clinical decision-making. This joint practice guideline/procedure standard from the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) provides recommendations based on the available evidence in the literature.

Conclusion

The purpose of this practice guideline/procedure standard is to assist imaging specialists and clinicians in recommending, performing, and interpreting the results of thyroid scintigraphy (including positron emission tomography) with various radiopharmaceuticals and radioiodine uptake test in patients with different thyroid diseases.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Baker CH, Morris JC. The sodium-iodide symporter. Curr Drug Targets Immune Endocr Metabol Disord. 2004;4:167–74.

    CAS  Article  Google Scholar 

  2. 2.

    Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev. 2003;24:48–77.

    CAS  Article  Google Scholar 

  3. 3.

    Giovanella L, Ceriani L, Treglia G. Role of isotope scan, including positron emission tomography/computed tomography, in nodular goitre. Best Pract Res Clin Endocrinol Metab. 2014;28:507–18.

    Article  Google Scholar 

  4. 4.

    Giovanella L, Campenni A, Treglia G, Verburg FA, Trimboli P, Ceriani L, et al. Molecular imaging with (99m)Tc-MIBI and molecular testing for mutations in differentiating benign from malignant follicular neoplasm: a prospective comparison. Eur J Nucl Med Mol Imaging. 2016;43:1018–26.

    CAS  Article  Google Scholar 

  5. 5.

    Treglia G, Caldarella C, Saggiorato E, Ceriani L, Orlandi F, Salvatori M, et al. Diagnostic performance of (99m)Tc-MIBI scan in predicting the malignancy of thyroid nodules: a meta-analysis. Endocrine. 2013;44:70–8.

    CAS  Article  Google Scholar 

  6. 6.

    Theissen P, Schmidt M, Ivanova T, Dietlein M, Schicha H. MIBI scintigraphy in hypofunctioning thyroid nodules--can it predict the dignity of the lesion? Nuklearmedizin. 2009;48:144–52.

    CAS  Article  Google Scholar 

  7. 7.

    Treglia G, Bertagna F, Sadeghi R, Verburg FA, Ceriani L, Giovanella L. Focal thyroid incidental uptake detected by 18F-fluorodeoxyglucose positron emission tomography. Nuklearmedizin. 2013;52(04):130–6.

    CAS  Article  Google Scholar 

  8. 8.

    Piccardo A, Puntoni M, Bertagna F, Treglia G, Foppiani L, Arecco F, et al. (18)F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging. 2014;41:1482–91.

    CAS  Article  Google Scholar 

  9. 9.

    Kusic Z, Becker DV, Saenger EL, Paras P, Gartside P, Wessler T, et al. Comparison of technetium-99m and iodine-123 imaging of thyroid nodules: correlation with pathologic findings. J Nucl Med. 1990;31:393–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Bongiovanni MPG, Ceriani L, Pusztaszeri M. Cellular and molecular basis for thyroid cancer imaging in nuclear medicine. Clin Transl Imaging. 2013;1:149–61.

    Article  Google Scholar 

  11. 11.

    Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand MJ, et al. The SNM practice guideline fof therapy of thyroid disease with 131I 3.0*. J Nucl Med. 2012;53:1633–51.

    Article  Google Scholar 

  12. 12.

    Hanscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40:1126–34.

    Article  Google Scholar 

  13. 13.

    Piga M, Cocco MC, Serra A, Boi F, Loy M, Mariotti S. The usefulness of 99mTc-sestaMIBI thyroid scan in the differential diagnosis and management of amiodarone-induced thyrotoxicosis. Eur J Endocrinol. 2008;159(4):423–9.

    CAS  Article  Google Scholar 

  14. 14.

    Pattison DA, Westcott J, Lichtenstein M, Toh HB, Gunawardana D, Better N, et al. Quantitative assessment of thyroid-to-background ratio improves the interobserver reliability of technetium-99m sestamibi thyroid scintigraphy for investigation of amiodarone-induced thyrotoxicosis. Nucl Med Commun. 2015;36(4):356–62.

    CAS  Article  Google Scholar 

  15. 15.

    Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol. 2017;14(5):587–95.

    Article  Google Scholar 

  16. 16.

    Schroder S, Marthaler B. Autonomy and malignancy of thyroid glad tumors. A critical analysis of the literature on the existence of hyperfunctioning follicular and papillary thyroid gland carcinomas. Pathologe. 1996;17(5):349–57.

    CAS  Article  Google Scholar 

  17. 17.

    Lupi A, Orsolon P, Cerisara D, Deantoni Migliorati G, Vianello Dri A. “Hot” carcinoma of the thyroid. Case reports and comments on the literature. Minerva Endocrinol. 2002;27(1):53–7.

    CAS  PubMed  Google Scholar 

  18. 18.

    Schenke S, Seifert P, Zimny M, Winkens T, Binse I, Goerges R. Risk stratification of thyroid nodules using Thyroid Imaging Reporting and Data System (TIRADS): the omission of thyroid scintigraphy increases the rate of falsely suspected lesions. J Nucl Med. 2018.

  19. 19.

    Giovanella L, D’Aurizio F, Campenni’ A, Ruggeri RM, Baldari S, Verburg FA, et al. Searching for the most effective thyrotropin (TSH) threshold to rule-out autonomously functioning thyroid nodules in iodine deficient regions. Endocrine. 2016;54(3):757–61.

    CAS  Article  Google Scholar 

  20. 20.

    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  Google Scholar 

  21. 21.

    Musholt TJ, Clerici T, Dralle H, Frilling A, Goretzki PE, Hermann MM, et al. German Association of Endocrine Surgeons practice guidelines for the surgical treatment of benign thyroid disease. Langenbeck's Arch Surg. 2011;396:639–49.

    Article  Google Scholar 

  22. 22.

    Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010;16(Suppl 1):1–43.

    Article  Google Scholar 

  23. 23.

    Grant EG, Tessler FN, Hoang JK, Langer JE, Beland MD, Berland LL, et al. Thyroid ultrasound reporting lexicon: white paper of the ACR thyroid imaging, reporting and data system (TIRADS) committee. J Am Coll Radiol. 2015;12:1272–9.

    Article  Google Scholar 

  24. 24.

    Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid. 2017;27:1341–6.

    Article  Google Scholar 

  25. 25.

    Ross D. Evaluation and management of thyroid nodules with indeterminate cytology. Up to date. 2018. https://uptodate.com. Accessed Jan 6 2019

  26. 26.

    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15.

    CAS  Article  Google Scholar 

  27. 27.

    Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99:119–25.

    CAS  Article  Google Scholar 

  28. 28.

    Are C, Hsu JF, Ghossein RA, Schoder H, Shah JP, Shaha AR. Histological aggressiveness of fluorodeoxyglucose positron-emission tomography (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol. 2007;14:3210–5.

    Article  Google Scholar 

  29. 29.

    de Koster EJ, de Geus-Oei LF, Dekkers OM, van Engen-van Grunsven I, Hamming J, Corssmit EPM, et al. Diagnostic utility of molecular and imaging biomarkers in cytological indeterminate thyroid nodules. Endocr Rev. 2018;39:154–91.

    Article  Google Scholar 

  30. 30.

    Klett M. Epidemiology of congenital hypothyroidism. Exp Clin Endocrinol Diabetes. 1997;105(Suppl 4):19–23.

    CAS  PubMed  Google Scholar 

  31. 31.

    Clerc J, Monpeyssen H, Chevalier A, Amegassi F, Rodrigue D, Leger FA, et al. Scintigraphic imaging of paediatric thyroid dysfunction. Horm Res. 2008;70:1–13.

    CAS  Article  Google Scholar 

  32. 32.

    Meller J, Becker W. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur J Nucl Med Mol Imaging. 2002;29:Suppl 2): 425–38.

    Article  Google Scholar 

  33. 33.

    Keller-Petrot I, Leger J, Sergent-Alaoui A, de Labriolle-Vaylet C. Congenital hypothyroidism: role of nuclear medicine. Semin Nucl Med. 2017;47:135–42.

    Article  Google Scholar 

  34. 34.

    ACR Practice Guidelines for Imaging Pregnant or Potentially Pregnant Adolescents and Women With Inonizing Radiation 2008 [Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/Pregnant-Pts.pdf?la=en. Accessed May 30th, 2019).

  35. 35.

    Lassmann M, Treves ST. Pediatric radiopharmaceutical administration: harmonization of the 2007 EANM Paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guideline. Eur J Nucl Med Mol Imaging. 2014;41:1636–041.

    Article  Google Scholar 

  36. 36.

    Gelfand MJ, Clements C, MacLean JR. Nuclear medicine procedures in children: special considerations. Semin Nucl Med. 2017;47:110–7.

    Article  Google Scholar 

  37. 37.

    Shimmins J, Alexander WD, McLarty DG, Robertson JW, Sloane DJ. 99mTc-pertechnetate for measuring thyroid suppressibility. J Nucl Med. 1971;12:51–4.

    CAS  PubMed  Google Scholar 

  38. 38.

    Hurtado-Lopez LM, Martinez-Duncker C. Negative MIBI thyroid scans exclude differentiated and medullary thyroid cancer in 100% of patients with hypofunctioning thyroid nodules. Eur J Nucl Med Mol Imaging. 2007;34:1701–3.

    Article  Google Scholar 

  39. 39.

    Campenni A, Siracusa M, Ruggeri RM, Laudicella R, Pignata SA, Baldari S, et al. Differentiating malignant from benign thyroid nodules with indeterminate cytology by (99m)Tc-MIBI scan: a new quantitative method for improving diagnostic accuracy. Sci Rep. 2017;7:6147.

    CAS  Article  Google Scholar 

  40. 40.

    Merten MM, Castro MR, Zhang J, Durski J, Ryder M. Examining the role of preoperative positron emission tomography/computerized tomography in combination with ultrasonography in discriminating benign from malignant cytologically indeterminate thyroid nodules. Thyroid. 2017;27:95–102.

    Article  Google Scholar 

  41. 41.

    Pak K, Kim SJ, Kim IJ, Kim BH, Kim SS, Jeon YK. The role of 18F-fluorodeoxyglucose positron emission tomography in differentiated thyroid cancer before surgery. Endocr Relat Cancer. 2013;20:203–13.

    Article  Google Scholar 

  42. 42.

    Piccardo A, Puntoni M, Treglia G, Foppiani L, Bertagna F, Paparo F, et al. Thyroid nodules with indeterminate cytology: prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur J Endocrinol. 2016;174:693–703.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the EANM and SNMMI committees and national delegates for their critical review of the manuscript. Also, we appreciate the great support of Sonja Niederkofler from the EANM office in Vienna and Julie Kauffman from the SNMMI office in Reston during the development of this guideline.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luca Giovanella.

Ethics declarations

Conflict of interest

L.G. is member of Roche Diagnostics’ advisory board and has received research grants and speaker honoraria from Roche Diagnostics, IBSA, and Sanofi-Genzyme. F.A.V. has received research grants from Sanofi-Genzyme and speaker honoraria from Sanofi-Genzyme, Diasorin, and Jubilant Draximage. M.L. has received research grants and speaker honoraria from Sanofi-Genzyme, Bayer, and Astra Zeneca. Other authors declare that they have no conflicts of interest. E.W. states that the opinions and assertions expressed herein are his own opinions and do not necessarily reflect the official policy or position of the Department of Defense or the Department of Air Force of the USA.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anca M. Avram is the co-chairs

This article is part of the Topical Collection on Endocrinology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giovanella, L., Avram, A.M., Iakovou, I. et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur J Nucl Med Mol Imaging 46, 2514–2525 (2019). https://doi.org/10.1007/s00259-019-04472-8

Download citation

Keywords

  • Thyroid
  • Scintigraphy
  • Radioiodine uptake test
  • 99mTc-sestaMIBI, 18F-fluorodeoxyglucose