Skip to main content

Incremental value of amyloid-PET versus CSF in the diagnosis of Alzheimer’s disease

Abstract

Purpose

To compare the incremental diagnostic value of amyloid-PET and CSF (Aβ42, tau, and phospho-tau) in AD diagnosis in patients with mild cognitive impairment (MCI) or mild dementia, in order to improve the definition of diagnostic algorithm.

Methods

Two independent dementia experts provided etiological diagnosis and relative diagnostic confidence in 71 patients on 3 rounds, based on (1) clinical, neuropsychological, and structural MRI information alone; (2) adding one biomarker (CSF amyloid and tau levels or amyloid-PET with a balanced randomized design); and (3) adding the other biomarker.

Results

Among patients with a pre-biomarker diagnosis of AD, negative PET induced significantly more diagnostic changes than amyloid-negative CSF at both rounds 2 (CSF 67%, PET 100%, P = 0.028) and 3 (CSF 0%; PET 78%, P < 0.001); PET induced a diagnostic confidence increase significantly higher than CSF on both rounds 2 and 3.

Conclusions

Amyloid-PET should be prioritized over CSF biomarkers in the diagnostic workup of patients investigated for suspected AD, as it provides greater changes in diagnosis and diagnostic confidence.

Trial registration

EudraCT no.: 2014-005389-31

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AD:

Alzheimer’s disease

MCI:

Mild cognitive impairment

PET:

Positron emission tomography

CSF:

Cerebrospinal fluid

References

  1. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  Google Scholar 

  2. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  Google Scholar 

  3. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403.

    CAS  Article  Google Scholar 

  4. Lewczuk P, Riederer P, O’Bryant SE, et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry. 2018;19:244–328.

    Article  Google Scholar 

  5. Carrillo MC, Blennow K, Soares H, et al. Global standardization measurement of cerebral spinal fluid for Alzheimer’s disease: an update from the Alzheimer’s Association Global Biomarkers Consortium. Alzheimers Dement. 2013;9:137–40.

    Article  Google Scholar 

  6. Perret-Liaudet A, Pelpel M, Tholance Y, et al. Risk of Alzheimer’s disease biological misdiagnosis linked to cerebrospinal collection tubes. J Alzheimers Dis. 2012;31:13–20.

    Article  Google Scholar 

  7. Mattsson N, Andreasson U, Persson S, et al. CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimers Dement. 2013;9:251–61.

    Article  Google Scholar 

  8. Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.

    CAS  Article  Google Scholar 

  9. Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11:964–74.

    Article  Google Scholar 

  10. Barthel H, Gertz HJ, Dresel S, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35.

    CAS  Article  Google Scholar 

  11. Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017;16:661–76.

    Article  Google Scholar 

  12. Palmqvist S, Zetterberg H, Mattsson N, et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015;85:1240–9.

    CAS  Article  Google Scholar 

  13. Bensaïdane MR, Beauregard JM, Poulin S, et al. Clinical utility of amyloid PET imaging in the differential diagnosis of atypical dementias and its impact on caregivers. J Alzheimers Dis. 2016;52:1251–62.

    Article  Google Scholar 

  14. Barthel H, Sabri O. Clinical use and utility of amyloid imaging. J Nucl Med. 2017;58:1711–7.

    Article  Google Scholar 

  15. Fantoni ER, Chalkidou A, O’ Brien JT, Farrar G, Hammers A. A systematic review and aggregated analysis on the impact of amyloid PET brain imaging on the diagnosis, diagnostic confidence, and management of patients being evaluated for Alzheimer’s disease. J Alzheimers Dis. 2018;63:783–96.

    Article  Google Scholar 

  16. Chiotis K, Saint-Aubert L, Boccardi M, et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017 Apr;52:214–27.

    CAS  Article  Google Scholar 

  17. Frisoni GB, Barkhof F, Altomare D, et al. AMYPAD diagnostic and patient management study: rationale and design. Alzheimers Dement. 2019;15:388–99.

    Article  Google Scholar 

  18. Imaging dementia-Evidence for Amyloid Scanning (IDEAS) Study: a coverage with evidence development longitudinal cohort study. Clinical trials.gov number: NCT02420756.

  19. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  Google Scholar 

  20. Hachinski VC, Iliff LD, Zilhka E, et al. Cerebral blood flow in dementia. Arch Neurol. 1975;32:632–7.

    CAS  Article  Google Scholar 

  21. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.

    Article  Google Scholar 

  22. Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.

    Article  Google Scholar 

  23. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360–3.

    PubMed  Google Scholar 

  24. Weston PS, Paterson RW, Dickson J, et al. Diagnosing dementia in the clinical setting: can amyloid PET provide additional value over cerebrospinal fluid? J Alzheimers Dis. 2016;54:1297–302.

    CAS  Article  Google Scholar 

  25. Grundman M, Pontecorvo MJ, Salloway SP, et al. Potential impact of amyloid imaging on diagnosis and intended management in patients with progressive cognitive decline. Alzheimer Dis Assoc Disord. 2013;27:4–15.

    CAS  Article  Google Scholar 

  26. Ossenkoppele R, Prins ND, Pijnenburg YA, et al. Impact of molecular imaging on the diagnostic process in a memory clinic. Alzheimers Dement. 2013;9:414–21.

    Article  Google Scholar 

  27. Zwan MD, Bouwman FH, Van der Flier WM, Lammertsma A, Van Berckel B, Scheltens P. Diagnostic value of amyloid imaging in early onset dementia. [abstract IC-P-013]. Alzheimers Dement. 2014;10:14. https://doi.org/10.1016/j.jalz.2014.05.017.

    Article  Google Scholar 

  28. Monsell SE, Kukull WA, Roher AE, et al. Characterizing apolipoprotein E ε4 carriers and noncarriers with the clinical diagnosis of mild to moderate Alzheimer dementia and minimal β-amyloid peptide plaques. JAMA Neurol. 2015;72:1124–31.

    Article  Google Scholar 

  29. Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313:1939–49.

    Article  Google Scholar 

  30. Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26:627–45.

    CAS  Article  Google Scholar 

  31. Landau SM, Lu M, Joshi AD, et al. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann Neurol. 2013;74:826–36.

    CAS  Article  Google Scholar 

  32. Mattsson N, Zetterberg H, Hansson O, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302:385–93.

    CAS  Article  Google Scholar 

  33. de Wilde A, van der Flier WM, Pelkmans W, et al. Association of amyloid positron emission tomography with changes in diagnosis and patient treatment in an unselected memory clinic cohort: the ABIDE project. JAMA Neurol. 2018;75:1062–70.

    Article  Google Scholar 

  34. Ceccaldi M, Jonveaux T, Verger A, et al. Added value of 18F-florbetaben amyloid PET in the diagnostic workup of most complex patients with dementia in France: a naturalistic study. Alzheimers Dement. 2018;14(3):293–305.

    Article  Google Scholar 

  35. Leuzy A, Savitcheva I, Chiotis K, et al. Clinical impact of [18F]flutemetamol PET among memory clinic patients with an unclear diagnosis. Eur J Nucl Med Mol Imaging. 2019;46:1276–86.

    Article  Google Scholar 

  36. Guo S, Getsios D, Hernandez L, et al. Florbetaben PET in the early diagnosis of Alzheimer’s disease: a discrete event simulation to explore its potential value and key data gaps. Int J Alzheimers Dis. 2012;2012:548157.

    PubMed  PubMed Central  Google Scholar 

  37. Sauvée M, DidierLaurent G, Latarche C, Escanyé MC, Olivier JL, Malaplate-Armand C. Additional use of Aβ42/Aβ40 ratio with cerebrospinal fluid biomarkers P-tau and Aβ42 increases the level of evidence of Alzheimer’s disease pathophysiological process in routine practice. J Alzheimers Dis. 2014;41:377–86.

    Article  Google Scholar 

  38. Boccardi M, Altomare D, Ferrari C, et al. Do beliefs about the pathogenetic role of amyloid affect the interpretation of amyloid PET in the clinic. Neurodegener Dis. 2016;16:111–7.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The study (EudraCT no. 2014-005389-31) sponsor was the Hôpitaux Universitaires de Genève (HUG). The study was financially supported by Piramal Imaging (now Life Molecular Imaging) that provided 18F-florbetaben at no cost, by the EU-EFPIA Innovative Medicines Initiative 2 Joint Undertaking grant no. 115952 (AMYPAD) and by the Swiss National Science Foundation under grant SNF 320030_169876. Piramal Imaging had no role in the design and conduct of the study: collection, management, analysis, and interpretation of the data.

Funding

This study was supported by Hôpitaux Universitaires de Genève (HUG); Piramal Imaging [grant number 115952]; and the Swiss National Science Foundation [grant number SNF 320030_169876].

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: Frisoni, Parapini.

Clinical consultant and data collection: Assal, Mendes, Picco, Nobili, Fattori, Salvadori, Costa, Tinazzi, Farotti, Moretti, E. Salvatore, M. Salvatore, Tarallo, Cotta Ramusino, Bacchin.

Amyloid PET scan reading: Morbelli, Bauckneht, Dottorini, Tranfaglia, Savelli, Cavaliere.

Statistical analysis and interpretation of data: Cotta Ramusino, Altomare, Garibotto, Boccardi, Frisoni.

Drafting of the manuscript: Cotta Ramusino, Altomare, Bacchin.

Critical revision of the manuscript for important intellectual continent: Garibotto, Dodich, Boccardi, Frisoni.

Obtained funding: Frisoni.

Study supervision: Cotta Ramusino, Frisoni.

Corresponding author

Correspondence to Matteo Cotta Ramusino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee (ethics committee of the University of Geneva) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

All subjects participating in this study have signed an informed consent form.

Data policy

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication

The manuscript has been seen and approved by all authors for submission to EJNMMI.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramusino, M.C., Garibotto, V., Bacchin, R. et al. Incremental value of amyloid-PET versus CSF in the diagnosis of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 47, 270–280 (2020). https://doi.org/10.1007/s00259-019-04466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04466-6

Keywords

  • Alzheimer’s disease
  • Mild cognitive impairment
  • Positron emission tomography
  • Cerebrospinal fluid
  • Incremental diagnostic value