Prognostic role of serial quantitative evaluation of 18F-fluorodeoxyglucose uptake by PET/CT in patients with cardiac sarcoidosis presenting with ventricular tachycardia

  • Daniele Muser
  • Pasquale Santangeli
  • Simon A. Castro
  • Jackson J. Liang
  • Andres Enriquez
  • Thomas J. Werner
  • Gaetano Nucifora
  • Silvia Magnani
  • Tatsuya Hayashi
  • Erica S. Zado
  • Fermin C. Garcia
  • David J. Callans
  • Sanjay Dixit
  • Benoit Desjardins
  • Francis E. Marchlinski
  • Abass Alavi
Original Article

Abstract

Background

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) has shown to be useful in diagnosis, staging and monitoring of cardiac sarcoidosis (CS) but its interpretation is not standardized.

Objectives

We sought to investigate the clinical impact of serial quantitative FDG uptake analysis in patients with CS presenting with ventricular tachycardia (VT) treated by catheter ablation (CA).

Methods

We followed 20 patients (51 ± 9 years, 70% males) with CS and VT who underwent CA, with 92 serial FDG-PET scans (3–10 per patient). Myocardial FDG-avid lesions were quantified using three parameters: maximum standardized uptake value (SUVmax), partial-volume corrected mean standardized uptake value (SUVmean) and partial-volume corrected volume-intensity product [lesion metabolic activity (LMA)]. The volume-intensity product of the entire heart [global cardiac metabolic activity (gCMA)] and the background cardiac metabolic activity (bCMA: difference between gCMA and LMA) were also calculated. The primary end-point was the occurrence of major adverse cardiac events (MACE), including death, heart transplant, hospitalization for heart failure and implantable cardioverter defibrillator (ICD) appropriate interventions. Evolution of echocardiographic parameters over follow-up was also assessed.

Results

During a median follow-up of 35 (20–66) months, 18 MACE (1 death, 2 heart transplants, 12 ICD appropriate interventions, 3 hospitalizations) occurred in 12 (60%) patients. At univariable analysis, lack of PET improvement (defined by decrease in LMA of at least 25%) was the only variable associated with cardiac events during follow-up. In particular, non-responders had a 20-fold higher risk of MACE at follow-up (HR 18.96, 95% CI 2.26–159.27; p = 0.007). Moreover, a significant linear inverse relationship was observed between changes in LMA and changes in left ventricular ejection fraction over follow-up (β = −20.11; p = 0.003).

Conclusions

In patients with CS and VT, temporal change in FDG uptake evaluated by a quantitative approach is associated with parallel change in systolic function. Moreover, reduction in FDG uptake is strongly associated with fewer MACE at long-term follow-up.

Keywords

Cardiac sarcoidosis FDG-PET Ventricular tachycardia Heart failure Metabolic activity 

Notes

Compliance with ethical standards

Conflict of interest disclosures

The authors declare that there is no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Birnie DH, Nery PB, Ha AC, Beanlands RSB. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016;68:411–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Kumar S, Barbhaiya C, Nagashima K, et al. Ventricular tachycardia in cardiac sarcoidosis characterization of ventricular substrate and outcomes of catheter ablation. Circ Arrhythm. Electrophysiol. 2015;8:87–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmadian A, Brogan A, Berman J, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21:925–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Yokoyama R, Miyagawa M, Okayama H, et al. Quantitative analysis of myocardial 18F-fluorodeoxyglucose uptake by PET/CT for detection of cardiac sarcoidosis. Int J Cardiol. 2015;195:180–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee P-I, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2017;24:19–28.CrossRefGoogle Scholar
  8. 8.
    Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Muser D, Santangeli P, Pathak RK, et al. Long-term outcomes of catheter ablation of ventricular tachycardia in patients with cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2016;9:e004333.CrossRefPubMedGoogle Scholar
  10. 10.
    Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1304–23.CrossRefGoogle Scholar
  11. 11.
    Ohira H, Tsujino I, Yoshinaga K. 18F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2011;38:1773–83.CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng VY, Slomka PJ, Ahlen M, Thomson LEJ, Waxman AD, Berman DS. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: a randomized controlled trial. J Nucl Cardiol. 2009;17:286–91.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ishimaru S, Tsujino I, Takei T, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Sosa E, Scanavacca M, d’Avila A, Pilleggi F. A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol. 1996;7:531–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Callans DJ, Ren JF, Michele J, Marchlinski FE, Dillon SM. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation. 1999;100:1744–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000;101:1288–96.CrossRefPubMedGoogle Scholar
  17. 17.
    Cano O, Hutchinson M, Lin D, et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J Am Coll Cardiol. 2009;54:799–808.CrossRefPubMedGoogle Scholar
  18. 18.
    Muser D, Santangeli P, Castro SA, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic dilated cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9.Google Scholar
  19. 19.
    Harrell F. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer; 2015.Google Scholar
  20. 20.
    Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol. 2016. Available at: http://link.springer.com/10.1007/s12350-016-0490-7. Accessed September 3, 2016.
  21. 21.
    Young L, Sperry BW, Hachamovitch R. Update on treatment in cardiac sarcoidosis. Curr Treat Options Cardiovasc Med. 2017;19. Available at: http://link.springer.com/10.1007/s11936-017-0539-1. Accessed June 14, 2017.
  22. 22.
    Houston BA, Park C, Mukherjee M. A diagnostic and therapeutic approach to arrhythmias in cardiac sarcoidosis. Curr Treat Options Cardiovasc Med. 2016;18. Available at: http://link.springer.com/10.1007/s11936-016-0439-9. Accessed June 14, 2017.
  23. 23.
    Salavati A, Borofsky S, Boon-Keng TK, et al. Application of partial volume effect correction and 4D PET in the quantification of FDG avid lung lesions. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2015;17:140–8.CrossRefGoogle Scholar
  24. 24.
    Beheshti M, Saboury B, Mehta NN, et al. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography--a novel concept. Hell J Nucl Med. 2011;14:114–20.PubMedGoogle Scholar
  25. 25.
    Abdulla S, Salavati A, Saboury B, Basu S, Torigian DA, Alavi A. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:350–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Basu S, Saboury B, Werner T, Alavi A. Clinical utility of FDG–PET and PET/CT in non-malignant thoracic disorders. Mol Imaging Biol. 2010;13:1051–60.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniele Muser
    • 1
  • Pasquale Santangeli
    • 1
  • Simon A. Castro
    • 1
  • Jackson J. Liang
    • 1
  • Andres Enriquez
    • 1
  • Thomas J. Werner
    • 2
  • Gaetano Nucifora
    • 3
  • Silvia Magnani
    • 1
  • Tatsuya Hayashi
    • 1
  • Erica S. Zado
    • 1
  • Fermin C. Garcia
    • 1
  • David J. Callans
    • 1
  • Sanjay Dixit
    • 1
  • Benoit Desjardins
    • 4
  • Francis E. Marchlinski
    • 1
  • Abass Alavi
    • 2
  1. 1.Cardiac Electrophysiology, Cardiovascular Medicine DivisionHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of Nuclear MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Northwest Heart Center, Wythenshawe HospitalUniversity Hospital of South Manchester NHS Foundation TrustManchesterUK
  4. 4.Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations