18F-FDG PET in drug-resistant epilepsy due to focal cortical dysplasia type 2: additional value of electroclinical data and coregistration with MRI

  • Serge Desarnaud
  • Charles Mellerio
  • Franck Semah
  • Agathe Laurent
  • Elisabeth Landre
  • Bertrand Devaux
  • Catherine Chiron
  • Vincent Lebon
  • Francine Chassoux
Original Article



To assess the localizing value of 18F-FDG PET in patients operated on for drug-resistant epilepsy due to focal cortical dysplasia type 2 (FCD2).


We analysed 18F-FDG PET scans from 103 consecutive patients (52 males, 7–65 years old) with histologically proven FCD2. PET and MRI data were first reviewed by visual analysis blinded to clinical information and FCD2 location. The additional value of electroclinical data and PET/MRI coregistration was assessed by comparison with pathological results and surgical outcomes.


Visual analysis of PET scans showed focal or regional hypometabolism corresponding to the FCD2 in 45 patients (44%), but the findings were doubtful or misleading in 37 patients and negative in 21. When considering electroclinical data, positive localization was obtained in 73 patients, and this increased to 85 (83%) after coregistration of PET and MRI data. Under the same conditions, MRI was positive in 61 patients (59%), doubtful in 15 and negative in 27. The additional value of PET was predominant in patients negative or doubtful on MRI, localizing the FCD2 in 35 patients (83%). Interobserver agreement correlated with the grade of hypometabolism: it was good in patients with mild to severe hypometabolism (82–95%), but moderate in those with subtle/doubtful hypometabolism (45%). The main factors influencing positive PET localization were the grade of hypometabolism and the size of the FCD2 (P < 0.0001). Misleading location (nine patients) was associated with a small FCD2 in the mesial frontal and central regions. Following limited cortical resection mainly located in extratemporal areas (mean follow-up 5.6 years), a seizure-free outcome was achieved in 94% of patients, including Engel’s class IA in 72%.


In this series, 18F-FDG PET contributed to the localization of FCD2 in 83% of patients. This high localizing value was obtained by integration of electroclinical data and PET/MRI coregistration. This approach may help improve the surgical outcome in extratemporal epilepsy, even in patients negative on MRI.


Focal cortical dysplasia 18F-FDG PET MRI Epilepsy surgery 



The authors thank the team of SHFJ, Patrick Bodilis, Christine Baron, Brigitte Jouve, Vincent Brulon, Philippe Gervais and Thierry Le Kieffre, for performing the PET scans.


All authors were involved in drafting and revising the article.

Compliance with ethical standards

Conflicts of interest


Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377:1648–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13:1114–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia. 2015;56:1669–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Chassoux F, Rodrigo S, Semah F, Beuvon F, Landré E, Devaux B, et al. FDG-PET improves surgical outcome in negative-MRI Taylor type focal cortical dysplasias. Neurology. 2010;75:2168–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Rubí S, Setoain X, Donaire A, Bargalló N, Sanmartí F, Carreño M, et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia. 2011;52:2216–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Chassoux F, Landre E, Mellerio C, Turak B, Mann MW, Daumas-Duport C, et al. Type II focal cortical dysplasia: electro-clinical phenotypes and surgical outcome related to imaging. Epilepsia. 2012;53:349–58.CrossRefPubMedGoogle Scholar
  7. 7.
    Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Engel J Jr, Van Ness PC, Rasmussen TB, Ojemann LM. Outcome with respect to epileptic seizures. In: Engel J Jr, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven; 1993. p. 609–21.Google Scholar
  9. 9.
    Mellerio C, Labeyrie MA, Chassoux F, Daumas-Duport C, Landre E, Turak B, et al. Optimizing MR imaging detection of type 2 focal cortical dysplasia: best criteria for clinical practice. AJNR Am J Neuroradiol. 2012;33:1932–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Rivière D, Geffroy D, Denghien I, Souedet N, Cointepas Y. BrainVISA: an extensible software environment for sharing multimodal neuroimaging data and processing tools. In: Proceedings of the 15th Annual Meeting of the Organization for Human Brain Mapping, 18–23 June 2009, San Francisco, California.
  11. 11.
    Chassoux F, Devaux B, Landre E, Turak B, Nataf F, Varlet P, et al. Stereo-electroencephalography in focal cortical dysplasia: a 3D approach to delineating the dysplastic cortex. Brain. 2000;123:1733–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee SK, Choe G, Hong KS, Nam HW, Kim JY, Chung CK, et al. Neuroimaging findings of cortical dyslamination with cytomegaly. Epilepsia. 2001;42:850–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim YK, Lee DS, Lee SK, Chung CK, Chung JK, Lee MC. (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med. 2002;43:1167–74.PubMedGoogle Scholar
  14. 14.
    Knowlton RC, Elgavish RA, Bartolucci A, Ojha B, Limdi N, Blount J, et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol. 2008;64:35–41.CrossRefPubMedGoogle Scholar
  15. 15.
    Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71:1594–601.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Paldino MJ, Yang E, Jones JY, Mahmood N, Sher A, Zhang W. Comparison of the diagnostic accuracy of PET/MRI to PET/CT-acquired FDG brain exams for seizure focus detection: a prospective study. Pediatr Radiol. 2017;47:1500–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Urbach H, Scheffler B, Heinrichsmeier T, von Oertzen J, Kral T, Wellmer J, et al. Focal cortical dysplasia of Taylor's balloon cell type: a clinicopathological entity with characteristic neuroimaging and histopathological features, and favorable postsurgical outcome. Epilepsia. 2002;43:33–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Besson P, Andermann F, Dubeau F, Bernasconi A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain. 2008;13:3246–55.CrossRefGoogle Scholar
  19. 19.
    Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134:2844–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Mellerio C, Labeyrie MA, Chassoux F, Roca P, Alami O, Plat M, et al. 3T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia. Epilepsia. 2014;55:117–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83:48–55.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mellerio C, Roca P, Chassoux F, Danière F, Cachia A, Lion S, et al. The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia. Radiology. 2015;274:500–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Roca P, Mellerio C, Chassoux F, Rivière D, Cachia A, Charron S, et al. Sulcus-based MR analysis of focal cortical dysplasia located in the central region. PLoS One. 2015;10:e0122252.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Colombo N, Tassi L, Deleo F, Citterio A, Bramerio M, Mai R, et al. Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology. 2012;54:1065–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Chassoux F, Navarro V, Catenoix H, Valton L, Vignal JP. Planning and management of SEEG. Neurophysiol Clin. 2018;48:25–37.CrossRefPubMedGoogle Scholar
  26. 26.
    Rathore C, Dickson JC, Teotónio R, Ell P, Duncan JS. The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res. 2014;108:1306–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Rubinger L, Chan C, D'Arco F, Moineddin R, Muthaffar O, Rutka JT, et al. Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia. 2016;57:32–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol. 2005;58:525–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Chapman K, Wyllie E, Najm I, Ruggieri P, Bingaman W, Lüders J, et al. Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J Neurol Neurosurg Psychiatry. 2005;76:710–3.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krsek P, Maton B, Jayakar P, Dean P, Korman B, Rey G, et al. Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology. 2009;72:217–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Widdess-Walsh P, Jeha L, Nair D, Kotagal P, Bingaman W, Najm I. Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology. 2007;69:660–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Tassi L, Colombo N, Garbelli R, Francione S, Lo Russo G, Mai R, et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain. 2002;125:1719–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Fauser S, Schulze-Bonhage A, Honegger J, Carmona H, Huppertz HJ, Pantazis G, et al. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology. Brain. 2004;127:2406–18.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim DW, Lee SK, Chu K, Park KI, Lee SY, Lee CH, et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology. 2009;72:211–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Harvey AS, Mandelstam SA, Maixner WJ, Leventer RJ, Semmelroch M, MacGregor D, et al. The surgically remediable syndrome of epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2015;84:2021–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Archambaud F, Bouilleret V, Hertz-Pannier L, Chaumet-Riffaud P, Rodrigo S, Dulac O, et al. Optimizing statistical parametric mapping analysis of 18F-FDG PET in children. EJNMMI Res. 2013;3:2.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mendes Coelho VC, Morita ME, Amorim BJ, Ramos CD, Yasuda CL, Tedeschi H, et al. Automated online quantification method for 18F-FDG positron emission tomography/CT improves detection of the epileptogenic zone in patients with pharmacoresistant epilepsy. Front Neurol. 2017;8:453.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mayoral M, Marti-Fuster B, Carreño M, Carrasco JL, Bargalló N, Donaire A, et al. Seizure-onset zone localization by statistical parametric mapping in visually normal (18)F-FDG-PET studies. Epilepsia. 2016;57:1236–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Tan YL, Kim H, Lee S, Tihan T, Ver Hoef L, Mueller SG, et al. Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. Neuroimage. 2018;166:10–8.CrossRefPubMedGoogle Scholar
  40. 40.
    van't Klooster MA, Huiskamp G, Zijlmans M, Debets RM, Comans EF, Bouvard S, et al. Can we increase the yield of FDG-PET in the preoperative work-up for epilepsy surgery? Epilepsy Res. 2014;108:1095–105.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication April 2018

Authors and Affiliations

  • Serge Desarnaud
    • 1
    • 2
  • Charles Mellerio
    • 3
  • Franck Semah
    • 4
    • 5
  • Agathe Laurent
    • 6
  • Elisabeth Landre
    • 6
    • 7
  • Bertrand Devaux
    • 6
    • 7
  • Catherine Chiron
    • 1
    • 8
    • 9
  • Vincent Lebon
    • 1
  • Francine Chassoux
    • 1
    • 6
    • 7
    • 9
    • 10
  1. 1.Department of Nuclear MedicineSHFJ-CEAOrsayFrance
  2. 2.Department of Nuclear MedicinePitié-Salpêtrière HospitalParisFrance
  3. 3.Department of Neuro-ImagingSainte-Anne HospitalParisFrance
  4. 4.Department of Nuclear MedicineCHU LilleLilleFrance
  5. 5.INSERM U 1171LilleFrance
  6. 6.Department of NeurosurgerySainte-Anne HospitalParisFrance
  7. 7.University Paris-DescartesParisFrance
  8. 8.INSERM U 1129ParisFrance
  9. 9.CEAGif-sur-YvetteFrance
  10. 10.INSERM U1023, CEA, Paris-Sud UniversityOrsayFrance

Personalised recommendations